(25点)

数学2(問題)

1. 次の各問の に入る答のみを、所定の解答用紙に記入	せよ。 (35点)
(1) ある番組の視聴率を信頼度95%で誤差が3%以内である。 を調査すればよい。	ように推定したいとき
(2)正規母集団N(μ, 1)の母平均の検定で、帰無仮説H。 よび第2種の誤りをおかす確率をともに0.01以下にしたい。 この検定に要する標本の数は 以上である。	: μ = 0 、対立仮説 H_1 : μ = 1 によって第 1 種お
(3)大きさ N の有限母集団から非復元抽出した大きさ n の標本を母分散を σ^2 とするとき、この母集団の総計推定量	を (X ₁ , X ₂ , …, X _n) とする。
$Z = \frac{N}{n} \sum_{k=1}^{n} X_k $ の分散は $V(Z) = [\sigma^2 $ となる。	
(4) 二項母集団B(p;k)、(ただしpは未知)からとった 大きさnの標本を度数によって整理したところ右表の結果を得た。	標本値 0 1 2 ··· j ··· k 合計
このとき アの最大推定値は である。	度数 n ₀ n ₁ n ₂ ··· n ₁ ··· n _k n
(5) 母数p (0 帰無仮説H。: p = 1/3、対立仮説H。: p ≠ 1/3、棄却域I と定めてH。を検定するとき、有意水準は (小数第4位をの幾何分布に従うとは、非負の整数kにたいして、P {X=k} = I	R:max(X ₁ , X ₂ , X₃)≥2 を4捨5入)である。ただし、確率変数Xが母数p
2. 次の間に答えよ。	(20点)
(1) 区間 $\{0, \theta\}$ 、 $\{\theta>0\}$ 上の一様分布をもつ母集団からて統計量 $S=C_1 \cdot (X_1 + X_2 + \dots + X_n)$ 、 $T=C_2 \cdot max$ このとき、 S 、 T ともに θ の不偏推定量となるように、定数 C_1 、	x (X ₁ , X ₂ , …, X _n)を考える。 C ₂ の値を定めよ。
(2) (1) で求めた θ の不偏推定量 S と T の どちらがより 有効 δ	
3. 次の間に答えよ。	(20点)
(1) 母集団分布が指数分布のとき、母平均をµとしてこの母集団	間からの大きさnの標本に対し、標本平均をXとす
るとき、 $\left(rac{2 \mathrm{n}}{\mu} \right) \mathrm{X}$ が従う確率分布を求めよ。	
(2)ある都市で電話の通話時間を 15 件について調べたところ平間を信頼度 95% で区間推定せよ(小数第 2 位を 4 捨 5 入)。なお、	² 均90秒であった。この都市の電話の平均通話時 通話時間は指数分布に従うものとする。

(1)信頼区間の幅の平均を、未知のパラメーター σ 、 t 。 (ϵ)、ガンマ函数 Γ (s) を用いて表わせ。

いう試行を繰り返し行うことを考える。このとき次の問に答えよ。

(2) 信頼区間の幅が 2σ よりも小さくなる確率が 95%以上となるためには標本の数 n をどの程度の大きさにすればよいか。

4. 正規母集団N (μ, σ^2) 、 $(\sigma^2:$ 未知)からn 個の標本を抽出して母平均 μ を信頼度9.5%で区間推定すると

必要であれば次の数値を用いよ。 標準正規分布: $\mathbf{u}(\epsilon)$ 、(上側確率 ϵ)

ε	0. 159	0. 100	0. 050	0. 025	0. 023	0. 010	0.005
u (ε)	1.000	1. 282	1. 645	1. 960	2. 000	2. 326	2. 576

χ^2 分布: $\chi^2_{\bullet}(\varepsilon)$ 、(自由度 ϕ , 上側確率 ε)

			- 					
ø	ε 0.995	0. 990	0. 975	0. 950	0. 050	0. 025	0. 010	0.005
3	0.072	0.115	0. 216	0. 352	7. 81	9. 35	11. 34	12. 84
4	0. 207	0. 297	0.484	0.711	9. 49	11. 14	13. 28	14. 86
5	0.412	0.554	0.831	1. 145	11.07	12. 83	15. 09	16. 75
6	0. 676	0.872	1. 237	1.635	12.59	14. 45	16. 81	18. 55
7	0. 989	1. 239	1.690	2. 17	14. 07	16. 01	18. 48	20. 3
8	1. 344	1. 646	2. 18	2.73	15. 51	17. 53	20. 1	22. 0
9	1. 735	2.09	2. 70	3. 33	16. 92	19.02	21.7	23. 6
1 0	2. 16	2. 56	3. 25	3. 94	18. 31	20.5	23. 2	25. 2
1 1	2, 60	3. 05	3. 82	4. 57	19.68	21. 9	24.7	26.8
1 2	3. 07	3. 57	4.40	5. 23	21.0	23. 3	26. 2	28.3
1 3	3. 57	4.11	5.01	5.89	22.4	24.7	27. 7	29.8
1 4	4. 07	4. 66	5. 63	6.57	23. 7	26. 1	29. 1	31.3
1 5	4.60	5. 23	6. 26	7. 26	25. 0	27.5	30.6	32.8
1 6	5. 14	5. 81	6. 91	7.96	26.3	28. 8	32. 0	34.3
17	5. 70	6.41	7. 56	8. 67	27.6	30. 2	33. 4	35.7
18	6. 26	7. 01	8. 23	9. 39	28. 9	31.5	34. 8	37. 2
1 9	6, 84	7.63	8. 91	10. 12	30. 1	32. 9	36. 2	38.6
2 0	7.43	8. 26	9. 59	10.85	31.4	34. 2	37.6	40.0
2 1	8. 03	8. 90	10. 28	11.59	32.7	35.5	38. 9	41.4
2 2	8. 64	9. 54	10. 98	12. 34	33. 9	36.8	40.3	42.8
2 3	9. 26	10. 20	11.69	13.09	35. 2	38. 1	41.6	44.2
2 4	9. 89	10.86	12.40	13.85	36. 4	39.4	43.0	45.6
2 5	10. 52	11.52	13. 12	14.61	37. 7	40.6	44.3	46. 9
26	11. 16	12. 20	13. 84	15. 38	38. 9	41.9	45.6	48. 3
2 7	11.81	12.88	14. 57	16. 15	40.1	43. 2	47.0	49.6
28	12. 46	13. 56	15. 31	16. 93	41.3	44.5	48.3	51.0
29	13. 12	14. 26	16. 05	17. 71	42.6	45.7	49.6	52. 3
3 0	13. 79	14.95	16. 79	18. 49	43. 8	47.0	50. 9	53. 7

t分布: t 。 (ϵ) 、(自由度 ϕ , 上側確率 ϵ)

φε	0. 050	0. 025	0. 010	0. 005
7	1. 895	2. 365	2. 998	3. 499
8	1. 860	2. 306	2. 896	3. 355
9	1. 833	2. 262	2. 821	3. 250
10	1. 812	2. 228	2. 764	3. 169
11	1. 796	2. 201	2. 718	3. 106
12	1. 782	2. 179	2. 681	3. 055

数学2 解答

・ (1)全体の視聴率を p. n 人のモニターの視聴率をβとすると確率 9 5 %で

$$|p-p| \le u \left(\frac{0.05}{2}\right) \sqrt{\frac{p(1-p)}{n}} = 1.96 \sqrt{\frac{p(1-p)}{n}}$$

☆は不明であるが

$$\hat{p}(1-\hat{p}) = -(\hat{p}-\frac{1}{2})^2 + \frac{1}{4} \le \frac{1}{4}$$
 $(0 \le \hat{p} \le 1)$

であるから、 $|p-\hat{p}| \le 1.96 \sqrt{\frac{1}{4 n}} \le 0.03$ を解けばよい。

従って、
$$n \ge \left(\frac{1.96}{0.03}\right)^2 \times \frac{1}{4} = 1067.1 \cdots$$

求める人数は 1068 人以上

(2) 第1種の誤りをおかす確率を0.01以下とするため、

 $P(\overline{X} \ge c \mid \mu = 0) \le 0.01$ f = 0.05

$$P (\overline{X} \ge c \mid \mu = 0) = P (\frac{\overline{X} - 0}{1 / \sqrt{n}} \ge \frac{c}{1 / \sqrt{n}} \mid \mu = 0)$$

$$= \int_{c}^{\infty} e^{-1/2 x^{2}} dx \le 0.01$$

u (0.01) = 2.326 であるから、c \sqrt{n} ≥ 2.326 ①

第2の誤りをおかす確率を0.01以下とするため、

 $P(\overline{X} < c \mid \mu = 1) \leq 0.01$ tabs

$$P\ (\overline{X} \geq c \mid \mu = 1\) \ = P\ (\frac{\overline{X} - 1}{1 \ / \ \sqrt{n}} \ \geq \ \frac{c - 1}{1 \ / \ \sqrt{n}} \ \mid \ \mu = 1\)$$

$$= \int \int_{\sqrt{n} (c-1)}^{\infty} e^{-1/2 x^{2}} dx > 0.99$$

$$u (0.01) = 2.326 \text{ $\rlap{$a$}} , (c-1) \sqrt{n} < -2.326$$
 ②

①
$$-$$
②より、 \sqrt{n} $\geq 2.326 \times 2 = 4.652$ $n \geq 21.641$ 答えは $2 2$

$$(1-p) \sum_{j=1}^{k} j n_{j} = p \sum_{j=1}^{k} (k-j) n_{j}$$

$$\sum_{j=1}^{k} j n_{j} = p k \sum_{j=1}^{k} n_{j} = p k n$$

$$\therefore \quad p = \boxed{\frac{1}{k \ n} \sum_{j=1}^{k} j \ n_{j}}$$

(5)
$$P(X \ge n) = \sum_{k=n}^{\infty} p^k (1-p)$$

$$= p^n (1-p) \sum_{k=n}^{\infty} p^k = p^n$$
 であるから、 $P(X < n) = 1 - p^n$

ところで、標本 X 1. X 2. X 8 について

$$P \{ m \ a \ x \ (X_1, X_2, X_3) \ge 2 \} = 1 - P \{ m \ a \ x \ (X_1, X_2, X_3) < 2 \}$$

$$= 1 - P \{X < 2\}$$

有意水準εは帰無仮説Η。が正しいときにこれを棄却してしまう確率であるから、

$$\varepsilon = 1 - P \{X < 2\}^3 = 1 - (1 - p^2)^3 = \frac{217}{729} = 0.298$$

2. E (S) = a
$$\sum_{i=1}^{n}$$
 E (X_i)

$$\text{cce}\left(X_{i}\right) = \int_{0}^{\theta} \frac{1}{\theta} x \, dx = \frac{1}{\theta} \left[\frac{x^{2}}{2}\right]_{0}^{\theta} = \frac{\theta}{2} \quad (i = 1, \dots, n)$$

$$\sharp_{\neg \tau}, E(S) = C_1 \cdot \frac{\theta}{2} \cdot n = \theta \sharp h, C_1 = \frac{2}{n}$$

次にU=max (X₁, X₂, …, X_n)とおくと、

$$P \{U \le x\} = P \{X_1 \le x, X_2 \le x, \dots, X_n \le x\}$$

$$= P \{X_1 \le x\} P \{X_2 \le x\} \dots P \{X_n \le x\}$$

$$= \left(\frac{x}{\theta}\right)^n \quad (0 \le x \le \theta)$$

$$\text{\sharp} \text{$\tt 2$} \text{$\tt 7$} \text{$\tt 7$} = \text{$\tt C$} \text{$\tt 2$} \int_{0}^{\theta} \left[\left(\frac{\textbf{$\tt X$}}{\theta} \right)^n \right]' \text{ $\tt X$} \text{ $\tt d$} \text{ $\tt X$} = \text{$\tt C$} \text{$\tt 2$} \cdot \frac{\textbf{$\tt n$}}{\theta} \int_{0}^{\theta} \textbf{$\tt X$}^n \text{ $\tt d$} \text{ $\tt X$}$$

$$= C_{2} \cdot \frac{n}{\theta^{n}} \left[\frac{x^{n+1}}{n+1} \right]_{0}^{\theta} = C_{2} \cdot \frac{n}{n+1} \theta = \theta \sharp \emptyset$$

$$C_2 = \frac{n+1}{n}$$

(2) V (S) = V
$$\left(\frac{2}{n} (X_1 + \dots + X_n)\right) = \frac{4}{n^2} \sum_{i=1}^{n} V (X_i)$$

$$= \frac{4}{n^2} \cdot n \cdot \frac{\theta^2}{12} = \frac{\theta^2}{3 n}$$

$$V(S) = V\left(\frac{n+1}{n} \cdot U\right) = \left(\frac{n+1}{n}\right)^2 V(U)$$

$$= \left(\frac{n+1}{n}\right)^{2} \{E(U^{2}) - (E(U))^{2}\}$$

$$= \left(\frac{n+1}{n}\right)^{2} \left\{ \int_{0}^{\theta} x^{2} \cdot \frac{n x^{n-1}}{\theta^{n}} dx - \left(\frac{n}{n+1} \theta\right)^{2} \right\}$$

$$= \left(\frac{n+1}{n}\right)^{2} \left\{ \frac{n}{\theta^{n}} \cdot \frac{\theta^{n+2}}{n+2} - \left(\frac{n}{n+1} \theta\right)^{2} \right\}$$

$$= \frac{\theta^{2}}{n \cdot (n+2)}$$

よって、V(S) - V(T) =
$$\frac{\theta^2}{3 \text{ n}} - \frac{\theta^2}{\text{ n (n+2)}}$$

= $\frac{\text{n-1}}{3 \text{ n (n+2)}} \theta^2 \ge 0 \text{ より}$

 $V(S) \ge V(T)$ となりTがより有効である。

3.

(1) X + の確率密度函数は

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-x/\mu} & (X > 0) \\ 0 & (X \le 0) \end{cases}$$

 $X = X_1 + X_2 + \dots + X_n$ の確率密度函数を f_n (x) とすると、

$$f_{1}(x) = \frac{1}{u} e^{-\frac{x}{\mu}}$$

$$f_{2}(x) = \int_{0}^{x} f_{1}(t) f_{1}(x-t) dt$$

$$= \int_{0}^{x} \frac{1}{\mu} e^{-\frac{t}{\mu}} \frac{1}{\mu} e^{-\frac{x-t}{\mu}} dt$$

$$= \frac{1}{\mu^{2}} e^{-\frac{x}{\mu}} x$$

$$f_{n-1}(x) = \frac{1}{\mu^{n-1}} \frac{1}{(n-2)!} x^{n-2} e^{-\frac{x}{\mu}} \xi d\xi$$

$$f_{n} (x) = \int_{0}^{x} \frac{1}{\mu^{n-1}} \frac{1}{(n-2)!} t^{n-2} e^{-\frac{t}{\mu}} \frac{1}{\mu} e^{-\frac{x-1}{\mu}} dt$$

$$= \frac{1}{\mu^{n}} e^{-\frac{x}{\mu}} \frac{1}{(n-2)!} \int_{0}^{x} t^{n-2} dt$$

$$= \frac{1}{\mu^{n}} e^{-\frac{x}{\mu}} \frac{1}{(n-1)!} \left[t^{n-1} \right]_{0}^{x}$$

$$= \frac{1}{\mu^{n}} \frac{1}{(n-1)!} x^{n-1} e^{-\frac{x}{\mu}}$$

よって数学的帰納法により、

Zの確率密度函数g(z)は

$$g(z) = \frac{1}{\mu^{n}} \frac{1}{\Gamma(n)} \left(\frac{\mu}{2} z\right)^{n-1} e^{-\frac{1}{\mu} \frac{\mu}{2} z} \frac{\mu}{2}$$

$$= \frac{1}{2^{n}} \frac{1}{\Gamma(n)} z^{n-1} e^{-\frac{z}{2}}$$

$$= \frac{1}{2^{\frac{2n}{2}}} \frac{1}{\Gamma(\frac{2n}{2})} z^{\frac{2n}{2}-1} e^{-\frac{z}{2}}$$

∴これは自由度2nのχ²分布に従う。

[別解] X:の確率密度函数は

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\pi/\mu} & (X > 0) \\ 0 & (X \le 0) \end{cases}$$

 $Y_{+}=rac{2}{\mu}$ X_{+} なる変数変換を行うとき、 Y_{+} の確率密度函数は

g (y) =
$$\frac{\mu}{2}$$
 f $\left(\frac{\mu}{2}$ y $\right) = \frac{1}{2}$ e $-y/2$ (y > 0)

であり、これは自由度2のχ²分布の確率密度函数である。

 Y_1 , Y_2 , … , Y_n は各々独立にこの分布に従う確率変数であることから χ^2 分布の再生性により、

$$Y_1 + Y_2 + \dots + Y_n = \frac{2}{\mu} (X_1 + X_2 + \dots + X_n) = \frac{2n}{\mu} \overline{X} t t$$

自由度2nのχ²分布に従う。

(2) (1) より $\frac{2n}{\mu}$ \overline{X} は自由度 2n の χ^2 分布に従うことから、信頼係数を $(1-\alpha)$ とすると

$$P\left(\chi^{2}_{2n}\left(1-\frac{\alpha}{2}\right)\right) \leq \frac{2n}{\mu} \overline{X} \leq \chi^{2}_{2n}\left(\frac{\alpha}{2}\right) \geq 1-\alpha \quad \sharp \, \emptyset$$

$$\frac{2 n \overline{X}}{\chi^{2}_{2n} \left(\frac{\alpha}{2}\right)} \leq \mu \leq \frac{2 n \overline{X}}{\chi^{2}_{2n} \left(1 - \frac{\alpha}{2}\right)} が求める信頼区間である。$$

$$n = 1.5$$
, $\overline{X} = 9.0$, $\alpha = 0$. 0.5 ± 9

$$\frac{2 \times 1.5 \times 9.0}{\chi^{2}_{30}(0.025)} \leq \mu \leq \frac{2 \times 1.5 \times 9.0}{\chi^{2}_{30}(0.975)}$$

4

(1) μの信頼区間を (μ₁, μ_u) とすると、

$$\mu_{1} = \overline{x} - t_{n-1} \quad (\frac{\varepsilon}{2}) \quad \frac{s}{\sqrt{n-1}}$$

$$\mu_{u} = \overline{x} + t_{n-1} \quad (\frac{\varepsilon}{2}) \quad \frac{s}{\sqrt{n-1}} \qquad s^{2} = \frac{1}{n} \quad \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

であるから信頼区間の幅しは

$$L = \frac{2 t_{n-1} (\varepsilon/2)}{\sqrt{n (n-1)}} \sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

 $Y=rac{1}{\sigma^2}\sum_{i=1}^n\left(X_i-\overline{X}\right)^2$ が自由度 n-1 の χ^2 分布に従うことを用いる。

$$L = \alpha \sigma Y^{1/2}$$
 (α は定数 = $\frac{2 t_{n-1} (\epsilon/2)}{\sqrt{n(n-1)}}$) であるから、

E (L) =
$$\alpha \sigma E$$
 (Y^{1/2})

$$E (Y^{1/2}) = \int_{0}^{\infty} \frac{x^{(n-1)/2-1} e^{-x/2}}{\Gamma((n-1)/2) 2^{(n-1)/2}} x^{1/2} dx$$

$$= \frac{1}{\Gamma((n-1)/2) 2^{(n-1)/2}} \int_{0}^{\infty} x^{n/2-1} e^{-x/2} dx$$

$$= \frac{1}{\Gamma((n-1)/2) 2^{(n-1)/2}} \int_{0}^{\infty} (2s)^{n/2-1} e^{-s} 2 ds$$

$$= \frac{2^{n/2}}{\Gamma((n-1)/2) 2^{(n-1)/2}} \Gamma(n/2)$$

$$= \frac{2^{1/2} \Gamma(n/2)}{\Gamma((n-1)/2)}$$

$$\therefore E (L) = \frac{2t_{n-1} (\epsilon/2)}{\sqrt{n(n-1)}} \cdot \sigma \cdot \frac{2^{1/2} \Gamma(n/2)}{\Gamma((n-1)/2)}$$

$$= \frac{2\sigma t_{n-1} (\epsilon/2)}{\sqrt{n(n-1)}} \cdot \frac{\Gamma(n/2)}{\Gamma((n-1)/2)}$$

(2) P {
$$L \leq 2 \sigma$$
 }

$$= P \{ \alpha \sigma Y^{1/2} \leq 2 \sigma \}$$

$$= P \{Y^{1/2} \le \frac{2}{a}\} = P \{Y \le \frac{4}{a^2}\} \ge 0.95$$
となれば良いが、

Υは自由度 n-1のχ² 分布に従うから、求める条件は

$$\frac{4}{\alpha^2} \ge \chi^2_{n-1}(0.05) \text{ $\pm t_{n-1}^2(0.025)$} \ge \chi^2_{n-1}(0.05)$$

これを計算すると

n	8	9	1 0	1 1	1 2
$\chi^{2}_{n-1}(0.05)$	14.07	15. 51	16.92	18. 31	19.68
$\frac{n (n-1)}{t_{n-1}^{2} (0.025)}$	10.01	13. 54	17.58	22. 16	27. 25

二 n は 1 0 以上必要である。