生保数理 (問題)

- **問題1.**次の $(1) \sim (6)$ について、各問の指示に従い、解答用紙の所定の欄にマークしなさい。 各4点(計24点)
 - (1) 期始払で初年度年金額が1、以後年金額が毎年一定額ħだけ増加する永久年金の現価が、期始 払で初年度年金額が1、以後年金額が毎年一定率 $\frac{i}{4}$ だけ増加し、 $\left(1+\frac{i}{4}\right)$ 、 $\left(1+\frac{i}{4}\right)^2$ 、…となる永久 年金の現価と等しいとき、hの値として最も適切なものは次のうちどれか。ただし、i(i>0)は 両永久年金の予定利率とする。
- (A) $\frac{i}{2}$ (B) $\frac{i}{3}$ (C) $\frac{2i}{3}$ (D) $\frac{i}{4}$ (E) $\frac{3i}{4}$ (F) $\frac{d}{2}$ (G) $\frac{d}{3}$ (H) $\frac{2d}{3}$ (I) $\frac{d}{4}$ (J) $\frac{3d}{4}$

- (2) 次の(A)~(E)のうち、常に正しい大小関係を表している不等式をすべて選びなさい。な お、 $(A) \sim (E)$ の中に常に正しい大小関係を表している不等式が1つもない場合は(F) を 選びなさい。ただし、k>0、i>0 とし、x歳における p_x は $0 < p_x < 1$ とする。

 - (A) $i < \delta$ (B) $m_x > \frac{q_x}{p_x}$ (C) $s_{\overline{n}}^{(k)} < \overline{s_{\overline{n}}}$ (D) $D_x < \overline{M}_x$ (E) $\overline{a}_x < \frac{1}{\delta}$

- (3) ある集団が原因 A、B、C によって減少していく 3 重脱退残存表を考える。ここで各脱退はそ れぞれ独立に発生し、1年を通じて一様に発生するものとする。 $l_r = 10,000$ 、 $l_{r+1} = 7,000$ とし、 原因 C による絶対脱退率を $q_{\star}^{c*} = 0.15$ とするとき、脱退率 q_{\star}^{c} の値に最も近いものは次のうちどれ
 - (A) 0.115
- **(B)** 0.125
- (C) 0.135
- **(D)** 0.145
- (E) 0.155

- (F) 0.165
- **(G)** 0.175
- **(H)** 0.185
- **(I)** 0.195
- (J) 0.205

(4)50歳加入、保険料年払全期払込、保険金年度末支払、保険金額1、保険期間10年の養老保険 において、責任準備金をチルメル割合 α の全期チルメル式で積み立てるとする。

第5保険年度末の責任準備金が0.44883であったとき、第1保険年度の危険保険料の値に最も近 いものは次のうちどれか。

ただし、予定利率i=2.00%、 $q_{50}=0.00442$ 、 $\ddot{a}_{50:\overline{10}}=8.9367$ 、 $\ddot{a}_{55:\overline{5}}=4.7362$ とする。

(A) 0.0036

(B) 0.0037 (C) 0.0038 (D) 0.0039 (G) 0.0042 (H) 0.0043 (I) 0.0044

(E) 0.0040

(F) 0.0041

(I) 0.0044

(J) 0.0045

(5) x 歳加入、保険料年払全期払込、保険金年度末支払、保険金額1、保険期間 n 年の養老保険に おいて、t年経過時点で貸付金があり、これを払済保険に変更するときの払済保険金額が0.4と なった。このとき、同時点で延長保険に変更するときの生存保険金額に最も近いものは次のうち どれか。

ただし、払済保険の予定事業費は毎保険年度始に払済保険金額1に対し0.002、延長保険の予定 事業費は毎保険年度始に死亡保険金額1に対し0.001、生存保険金額1に対し0.001とする。ま た、 $\ddot{a}_{x+r_{n-1}} = 13.74580$ 、 $A_{x+r_{n-1}} = 0.86390$ 、 $A_{x+r_{n-1}} = 0.81687$ 、W = 0.46280 とする。

なお、払済保険金額、生存保険金額を計算する際は、変更時点の解約返戻金から貸付金を差し引 くものとし、延長保険の死亡保険金額については変更前の死亡保険金額から貸付金を差し引いた 額に変更するものとする。ここで、貸付金についての利息は考慮しないものとする。

(A) 0.340

(B) 0.344 (C) 0.348 (D) 0.352 (G) 0.364 (H) 0.368 (I) 0.372

(E) 0.356

(F) 0.360

(I) 0.372

(J) 0.376

(6) 男性の死力を μ_x で表し、 $\mu_x = \frac{1}{90-x}(0 \le x < 90)$ とする。また、女性の死力を μ_y' で表し、

 $\mu'_y = \frac{1}{100-v} (0 \le y < 100)$ とする。将来の全期間において、50歳の男性が70歳の女性より後に死 亡する確率に最も近いものは次のうちどれか。

(A) 0.500

(B) 0.525

(C) 0.550

(**D**) 0.575

(E) 0.600

(F) 0.625

(**G**) 0.650

(H) 0.675

(I) 0.700

(J) 0.725

余白ページ	余	白	~~	ジ
-------	---	---	----	---

問題2. 次の(1)~(8) について、各問の指示に従い、解答用紙の所定の欄にマークしなさい。 各7点(計56点)

- (1) ある定常社会が以下の条件を満たしているとする。この定常社会において、20歳以上60歳未満の死亡者における死亡時年齢の平均の値に最も近いものは次のうちどれか。
 - ・平均寿命は75.99年である。
 - ・1年間における死亡者のうち、20歳以上で死亡する者の割合は98.88%である。
 - ・20 歳以上の人口は全人口の73.82%であり、60 歳以上の人口は全人口の23.39%である。
 - ・60歳以上の死亡者における死亡時年齢の平均は80.17歳である。

ただし、この社会への加入の原因は出生のみとし、脱退の原因は死亡のみとする。

- (A) 46.4 歳 (B) 47.5 歳 (C) 48.6 歳 (D) 49.7 歳 (E) 50.8 歳 (F) 51.9 歳 (G) 53.0 歳 (H) 54.1 歳 (I) 55.2 歳 (J) 56.3 歳
- (2) 予定利率がiで、x歳加入、保険料一時払、第t保険年度($1 \le t \le n$)の死亡には保険金額 \ddot{a}_{\sqcap} をその年度末に支払う保険期間n年の逓増定期保険を考える。ここで、予定利率がjで、x歳加入、保険料一時払、保険金年度末支払、保険金額1、保険期間n年の定期保険の一時払純保険料を $A^{[j]}$ と表すこととするとき、この逓増定期保険の一時払純保

$$A = \frac{1}{\boxed{\bigcirc}} \cdot (A^{\left[\boxed{\bigcirc}\right]} - A^{\left[\boxed{\bigcirc}\right]})$$

険料Aは、 $A^{[j]}$ の形を用いて次のとおり表せる。

- ①~③の空欄に当てはまる最も適切なものをそれぞれ次の選択肢の中から選びなさい。なお、同じ選択肢を複数回用いてもよい。
 - (A) v (B) v^2 (C) $\frac{1}{v}$ (D) d (E) d^2
 - (F) i (G) i^2 (H) i^2+i (I) i^2+2i (J) i^2+2i+1

(3) x 歳加入、保険料連続払全期払込、満期保険金額1、保険期間10年の生存保険で、期間途中の 死亡に対しては責任準備金の6割を即時に支払う保険を考える。

この保険の連続払純保険料をこの保険における以下の Thiele の微分方程式を用いて求めた場合、 連続払純保険料の値に最も近いものは次のうちどれか。ただし、利力は0.005、死力は保険期間 にわたり 0.0125 であるとし、必要であれば $e^{0.01} = 1.01005$ を用いなさい。

$$\frac{d_{t}V^{(\infty)}}{dt} = (\mu_{x+t} + \delta) \cdot {}_{t}V^{(\infty)} + P^{(\infty)} - \mu_{x+t} \cdot S_{t} \qquad (0 < t < 10)$$

ここで、

 $\mathcal{N}^{(\infty)}$: 時点 t における責任準備金

 $oldsymbol{P}^{(\infty)}$: 連続払純保険料

(区間[$t,t+\varepsilon$]の間に収入される純保険料の総額が $P^{(\infty)}\cdot\varepsilon$ であることを意味する)

 S_{\cdot} : 時点 t における死亡保険金額

: 時点 *t* における死力 μ_{x+t}

: 利力

ヒント: 微分可能な t の関数 f(t) と定数 C に対して $\frac{d}{dt} f(t) + C \cdot f(t) = e^{-Ct} \cdot \frac{d}{dt} (f(t) \cdot e^{Ct})$ が成り立

(A) 0.090

(B) 0.091 (C) 0.092 (D) 0.093 (E) 0.094 (G) 0.096 (H) 0.097 (I) 0.098 (J) 0.099

(F) 0.095

(4) x 歳加入、保険料年払全期払込、保険金年度末支払、保険金額1、保険期間 n 年(n>1)の定期 保険について、死亡危険が標準である者(以下、標準体と記載する)の死亡率が $\{q_{x+k}\}$ 、死亡危 険が標準体よりも高い者(以下、特別条件体と記載する)の死亡率が $\{q'_{**}\}$ に従うものとする (k) $=0,1,\cdots,n-1$)。このとき、特別条件体の年払純保険料をP'、標準体の年払純保険料をPと するとき、その差は次のとおり表せる。

$$P'-P = \frac{1}{N'_{x} - N'_{x+n}} \cdot \sum_{k=0}^{n-1} \boxed{1} \cdot (q'_{x+k} - q_{x+k}) \cdot (1 - \boxed{2})$$

①および②に当てはまる組み合わせ {①,②} として最も適切なものは次のうちどれか。 ただし、標準体の死亡率に従う計算基数、責任準備金は D_{r} 、 N_{r} 、I とし、特別条件体の死亡 率に従う計算基数、責任準備金は D_x' 、 N_x' 、 N_x' 、 N_x' とする。また、標準体と特別条件体の予定利率 は同じとする。

(A)
$$\left\{v\cdot D'_{x+k}, kV'\right\}$$

(B)
$$\{v\cdot D'_{x+k}, k\}$$

(B)
$$\left\{v\cdot D'_{x+k}, kV\right\}$$
 (C) $\left\{D'_{x+k}, kV'\right\}$

(D)
$$\left\{ \begin{array}{ll} D'_{x+k} & , & {}_k V \end{array} \right.$$

(E)
$$\{v \cdot D'_{v+k}, v'\}$$

$$(\mathbf{F}) \quad \{ v \cdot D'_{r+k}, \quad _{k+1}V$$

(D)
$$\left\{ D'_{x+k} \ , \ _{k}V \ \right\}$$
 (E) $\left\{ v \cdot D'_{x+k} \ , \ _{k+1}V' \ \right\}$ (F) $\left\{ v \cdot D'_{x+k} \ , \ _{k+1}V \ \right\}$ (G) $\left\{ D'_{x+k} \ , \ _{k+1}V' \ \right\}$ (I) $\left\{ D'_{x+k} \ , \ 0 \ \right\}$

$$(\mathsf{H}) \quad \left\{ \begin{array}{c} D'_{x+k} & , \quad {}_{k+1} V \end{array} \right\}$$

(1)
$$\{D'_{n,k}, 0\}$$

(J)
$$\left\{v\cdot D'_{x+k}, 0\right\}$$

(5) 40 歳加入、保険料年払 20 年払込、60 歳年金開始、年金年度始支払、年金開始後最初の 10 年間 は年金額 2、それ以降は年金額 1 の終身年金保険を考える。

なお、年金開始前に死亡した場合には、年度末に既払込保険料と同額を支払うこととする。

年金原資とは、年金開始時点における年金現価であり、<u>年金開始後の予定事業費を含めた金額</u>とする。

予定事業費は以下のとおりとする。

予定新契約費	新契約時にのみ、年金原資1に対し0.05
予定維持費	毎保険年度始に、年金開始前は年金原資1に対し毎年0.001、
	年金開始後は年金額1に対し毎年0.005
予定集金費	保険料払込のつど、営業保険料1に対し0.01

この保険の営業保険料を P_1 、この保険に以下の変更を加えた場合の営業保険料を P_2 としたとき、 P_2 の値に最も近いものは次のうちどれか。ここで、計算基数は下表のとおりとする。

【変更内容】

- ・年金開始後の年金額を常に1とする。
- ・予定新契約費を、新契約時にのみ、年金原資1に対し0.03とする。

х	D_x N_x N_x		$M_{_X}$	$R_{_X}$
40	65,692	2,199,256	43,917	1,744,712
60	50,219	1,027,831	40,042	893,573
70	40,214	568,678	34,584	514,922

(A)	0.650	(B)	0.655	(C)	0.660	(D)	0.665	(E)	0.670
(F)	0.675	(G)	0.680	(H)	0.685	(I)	0.690	(L)	0.695

(6) 40 歳加入、保険料年払全期払込、保険金年度末支払、保険金額 1、保険期間 30 年の養老保険において、5 年経過時点で、保険期間 25 年に変更する場合の変更後保険料の算出方法として、以下の 2 通りの方法を考える。

方法	է 1	40歳加入、保険期間25年(注)の保険料に、変更時点における							
		責任準備金の差額を変更以降満期までの間平準化して加算した保							
		険料とする方法							
方法	է 2	変更の時点で45歳加入、保険期間20年(注)に新規に加入する							
		ものとした保険料から、元の契約の変更時点における責任準備金							
		を変更以降満期までの間平準化して減算した保険料とする方法							

(注) 保険料年払全期払込、保険金年度末支払、保険金額1の養老保険を指す。

また、予定利率は1.00%とし、予定事業費は以下のとおりとする。

予定新契約費	新契約時にのみ、保険金額1に対し0.025
予定維持費	毎保険年度始に、保険金額1に対し0.001
予定集金費	保険料払込のつど、営業保険料1に対し0.03

平準化して加減する部分については、予定事業費を考慮しないものとし、「保険料」とは平準年 払営業保険料、「責任準備金」とは平準純保険料式責任準備金とする。また、保険年度末に保険 期間を変更するものとする。

このとき、方法 1 の変更後の平準年払営業保険料を P_1 、方法 2 の変更後の平準年払営業保険料を P_2 としたとき、 P_1 = ① 、 P_2 = ② となる。①および②の空欄に当てはまる値に最も近いものをそれぞれ選びなさい。なお、同じ選択肢を複数回用いてもよい。ここで、計算基数は下表のとおりとする。

x	D_{x}	N_{x}
40	65,987	2,257,734
45	62,392	1,935,004
65	46,521	830,421
70	41,349	607,873

(A)	0.04150	(B)	0.04156	(C)	0.04163	(D)	0.04169	(E)	0.04176
(F)	0.04182	(G)	0.04189	(H)	0.04195	(1)	0.04202	(.1)	0.04208

(7) $l_x^{ii}=K_x\cdot l_x$ なる関係があるとき、就業者が 1 年以内に就業不能者になる確率 $q_x^{(i)}$ を表す最も適切な算式を選びなさい。ここで、 $q_x=\frac{d_x}{l_x}$ 、 $0< K_x<1$ とする。

なお、死亡および就業不能はそれぞれ独立かつ1年を通じて一様に発生するものとする。また、 就業不能者でない者は就業者であるものとし、就業不能者が回復して就業者に復帰することはな いものとする。

$$(\mathbf{A}) \quad \frac{K_{x} \cdot \left(1-q_{x}\right) - K_{x+1} \cdot \left(1-q_{x}^{i}\right)}{K_{x} \cdot \left(1-\frac{1}{2}q_{x}^{i}\right)} \qquad (\mathbf{B}) \quad \frac{K_{x} \cdot \left(1-q_{x}\right) - K_{x+1} \cdot \left(1-q_{x}^{i}\right)}{\left(1-K_{x}\right) \cdot \left(1-\frac{1}{2}q_{x}^{i}\right)}$$

(C)
$$\frac{K_{x+1} \cdot (1 - q_x) - K_x \cdot (1 - q_x^i)}{K_x \cdot (1 - \frac{1}{2} q_x^i)}$$
 (D)
$$\frac{K_{x+1} \cdot (1 - q_x) - K_x \cdot (1 - q_x^i)}{(1 - K_x) \cdot (1 - \frac{1}{2} q_x^i)}$$

$$(\mathbf{E}) \quad \frac{K_{x} \cdot \left(1 - q_{x}\right) - K_{x+1} \cdot \left(1 - \frac{1}{2}q_{x}^{i}\right)}{K_{x} \cdot \left(1 - q_{x}^{i}\right)} \qquad \qquad (\mathbf{F}) \quad \frac{K_{x} \cdot \left(1 - q_{x}\right) - K_{x+1} \cdot \left(1 - \frac{1}{2}q_{x}^{i}\right)}{\left(1 - K_{x}\right) \cdot \left(1 - q_{x}^{i}\right)}$$

(G)
$$\frac{K_{x+1} \cdot (1-q_x) - K_x \cdot \left(1 - \frac{1}{2} q_x^i\right)}{K_x \cdot \left(1 - q_x^i\right)}$$
 (H)
$$\frac{K_{x+1} \cdot \left(1 - q_x\right) - K_x \cdot \left(1 - \frac{1}{2} q_x^i\right)}{\left(1 - K_x\right) \cdot \left(1 - q_x^i\right)}$$

(I)
$$\frac{K_{x} \cdot (1-q_{x}) - K_{x+1} \cdot (1-q_{x}^{i})}{K_{x+1} \cdot \left(1 - \frac{1}{2}q_{x}^{i}\right)}$$
 (J)
$$\frac{K_{x} \cdot (1-q_{x}) - K_{x+1} \cdot (1-q_{x}^{i})}{(1-K_{x+1}) \cdot \left(1 - \frac{1}{2}q_{x}^{i}\right)}$$

(8) 手術種類に応じた保障を行う下表のような手術保障付生存保険を考える。各年齢の被保険者について、その後1年間の手術種類別の予定手術発生率は年齢によらず一定とする。なお、各手術は互いに独立に発生するものとする。また、各手術の発生及び手術給付金の支払は年央に発生するものとし、各手術はそれぞれ1年間に2回以上発生しないものとする。

加入年齢	<i>x</i> 歳
保険期間	20 年 (20< ω - x -1)
保険料払込方法	一時払
第 t 保険年度の手術給付	次の金額を手術発生時に支払う
金(1 $\leq t \leq 20$)	手術種類 1 の場合: 2 - t 20
	手術種類 2 の場合: $3-\frac{t}{20}$
満期まで生存した場合	1を満期時に支払う
予定手術発生率	手術種類1の予定手術発生率は手術種類2の予定手術発生
	率の2倍とする
契約消滅の条件	満期を迎えた場合に消滅する(手術発生後に生存していれ
	ば契約は継続する)

ただし、予定利率 i=1.00%、 $\ddot{a}_{x:\overline{20}|}=18.1$ 、 $A_{x:\overline{20}|}=0.81$ 、 $(I\ddot{a})_{x:\overline{20}|}=183.5$ とする。 この保険の一時払純保険料が 1 のとき、手術種類 1 の予定手術発生率の値に最も近いものは次のうちどれか。

(A) 0.00189 (B) 0.00217 (C) 0.00245 (D) 0.00273 (E) 0.00301 (F) 0.00329 (G) 0.00357 (H) 0.00385 (I) 0.00413 (J) 0.00441

問題3. 次の(1)、(2) について、各間の指示に従い、解答用紙の所定の欄にマークしなさい。 各10点(計20点)

- (1) 定常状態開集団のある集団に対して、期中における平均余命が観測された場合において、その 集団の死亡率を推定する方法を考える。次の①~⑩の空欄に当てはまる最も適切なものを選択肢 の中から1つ選びなさい。なお、同じ選択肢を複数回用いてもよい。
 - (i) まず、平均余命を用いて死力を表すことを考える。

$$\frac{d_t p_x}{dx} を死力 \mu_x を用いて表すと、$$

$$\frac{d_t p_x}{dx} = {}_t p_x \cdot \left(\boxed{1} - \boxed{2} \right) \cdots (1)$$

と書くことができる。次に、 $\frac{d\mathring{e}_x}{dx}$ を考えると、(I)を用いて

$$\frac{d\mathring{e}_x}{dx} = \frac{d}{dx} \int_0^\infty {}_t p_x dt = \int_0^\infty \frac{d_t p_x}{dx} dt = \boxed{3} - \boxed{4}$$

となる。ここで上式を μ_r について整理すると

$$\mu_{x} = \frac{1}{\boxed{\text{5}}} + \frac{1}{\boxed{\text{6}}} \cdot \frac{d\mathring{e}_{x}}{dx} \quad \cdots \quad (\text{ II })$$

となり、平均余命を用いて死力を表すことができた。

(ii) この集団に対して、満年齢 60 歳における平均余命が 22 年であることがわかっている。このとき、この集団の満年齢 60 歳に対する死亡率 q_{60} を求めたい。なお、満年齢 61 歳における平均余命は 21.2 年であることがわかっている。また、1 年を通じて死亡が一様に発生するものとし、各満年齢間の平均余命は線形で近似されるものとする。

1年を通じて死亡が一様に発生することから、 $l_{x+t} = l_x - d_x \cdot t$ ($0 \le t \le 1$)であることより、x 歳の中央死亡率 $m_x = \boxed{ ⑦ }$ であることがわかる。(死力を用いて表すこと)

⑨の値を用いて、 $q_{60} = \boxed{ ⑩ }$ とわかる。

【(i)、(ii)⑦の選択肢】

ア)
$$l_x$$
 (イ) l_{x+t} (ウ) $l_{x+rac{1}{2}}$ (エ) μ_x (オ) μ_{x+t}

(カ)
$$\mu_{x+\frac{1}{2}}$$
 (キ) T_x (ク) T_{x+t} (ケ) $T_{x+\frac{1}{2}}$ (コ) d_x

(サ)
$$d_{x+t}$$
 (シ) $d_{x+\frac{1}{2}}$ (ス) \mathring{e}_{x} (セ) \mathring{e}_{x+t} (ソ) $\mathring{e}_{x+\frac{1}{2}}$

(タ)
$$\mu_x \cdot \mathring{e}_x$$
 (チ) $\mu_{x+t} \cdot \mathring{e}_{x+t}$ (ツ) $\mu_{x+\frac{1}{2}} \cdot \frac{\mathring{e}}{x+\frac{1}{2}}$ (テ) $p_x \cdot \mu_x$ (ト) $p_x \cdot \mu_{x+t}$

(†)
$$q_x$$
 (=) q_{x+t} (ヌ) $q_{x+\frac{1}{2}}$ (ネ) 0 (ノ) $\frac{1}{2}$

(ハ) 1 (ヒ)
$$x$$
 (フ) $x+t$ (ヘ) $x+\frac{1}{2}$ (木) $x-t$

(₹)
$$x-1$$
 (₹) $x-\frac{1}{2}$

【 (ii) ⑧~⑩の選択肢】

- (2) 息子 3 歳、父 40 歳加入、保険料年払全期払込、保険金年度末支払、保険期間 15 年で次の(a) ~(d)の条件を満たす親子連生保険を考える。
 - (a) 息子が12歳、15歳に到達するごとに生存給付金0.5を支払い、息子が満期まで生存した場合には満期保険金1を支払う。
 - (b) 父が死亡した場合には、父が死亡した保険年度の翌年度始から第15保険年度始まで、息子の生存を条件にHの年金を支払う。
 - (c) 息子が死亡した場合には、既払込保険料(払込免除の保険料を含む)を死亡保険金として 支払い、契約は消滅する。
 - (d) 父が死亡した場合には、その後の保険料の払込を免除する。また、予定死亡率は息子、父ともに同一の生命表に従うものとする。

このとき、次の(i)、(ii)の各間について答えなさい。

(i) 次の①~⑫の空欄に当てはまる最も適切なものを選択肢の中から1つ選びなさい。 なお、同じ選択肢を複数回用いてもよい。

この保険の平準年払営業保険料をPとしたとき、(a)~(c)にかかる給付現価は、

(a)
$$\frac{0.5 \cdot (\boxed{1} + \boxed{2}) + \boxed{3}}{D_3}$$

(b) $H \cdot (\boxed{4} - \boxed{5}) - \boxed{6} - \boxed{7}$
(c) $P \cdot \boxed{9} - \boxed{0} - 15 \times \boxed{1}$

と表すことができる。

(ii) H=0.4、 $\ddot{a}_{3,40:\,\overline{15}|}=13.9799$ 、予定事業費は以下のとおりとしたとき、この保険の平準年払営業保険料Pに最も近いものを選択肢の中から1つ選びなさい。

予定新契約費	新契約時にのみ、満期保険金額1に対し0.025
予定維持費	毎保険年度始に、年金開始前は満期保険金額1に対し0.001
	年金開始後は年金額1に対し0.005
予定集金費	保険料払込のつど、営業保険料1に対し0.03

ここで、計算基数は下表のとおりとする。

х	D_{x}	N_{x}	M_{x}	$R_{_{X}}$
3	97,240	5,558,673	50,389	3,871,398
12	90,028	4,712,816	50,306	3,418,286
15	87,743	4,445,024	50,278	3,267,392
18	85,488	4,184,055	50,222	3,116,607
40	70,028	2,469,799	49,212	2,021,237
55	59,697	1,490,102	47,137	1,294,381

	(i) の選	聲択肢】								
	(A)	D_3	(B)	D_{12}	(C)	$D_{\!\scriptscriptstyle 15}$	(D)	$D_{\!\scriptscriptstyle 18}$	(E)	$D_{\!\scriptscriptstyle 40}$
	(F)	$D_{\scriptscriptstyle 55}$	(G)	$D_{3,40}$	(H)	$D_{18,55}$	(I)	N_3	(J)	N_{12}
	(K)	N_{15}	(L)	N_{18}	(M)	N_{40}	(N)	N_{55}	(O)	$N_{3,40}$
	(P)	$N_{18,55}$	(Q)	M_3	(R)	M_{12}	(S)	M_{15}	(T)	M_{18}
	(U)	M_{40}	(V)	M_{55}	(W)	R_3	(X)	R_{18}	(Y)	R_{40}
	(Z)	R_{55}								
ľ	(ii)の選	幸招 眭】								
1		0.136	(B)	0.138	(C)	0.140	(D)	0.142	(E)	0.144
		0.146		0.148		0.150		0.152		0.154

以上

生保数理 (解答例)

問題1.

設問	解答	配点	設問	解答	配点
(1)	(B)	4 点	(4)	(F)	4 点
(2)	(C), (E)	4 点	(5)	(G)	4 点
(3)	(C)	4 点	(6)	(F)	4 点

※(2)は完答の場合のみ得点。

(1)

期始払で初年度年金額が1、以後年金額が毎年一定額 h だけ増加する永久年金の現価 ä は、

$$\ddot{a}_{\infty}^{(1)} = 1 + v \cdot (1+h) + v^2 \cdot (1+2h) + \cdots$$

両辺にνを乗じて、元の式の両辺から差し引くと、

$$(1-v)\cdot \ddot{a}_{\infty}^{(1)} = 1 + v\cdot h + v^2\cdot h + \dots = 1 + h\cdot \frac{v}{1-v} = 1 + \frac{h}{i}$$

よって、

$$\ddot{a}_{\infty}^{(1)} = \frac{1+i}{i} \cdot \left(1 + \frac{h}{i}\right)$$

期始払で初年度年金額が1、以後年金額が毎年一定率r(<1+i)だけ増加する永久年金の現価 $\ddot{a}_{\infty}^{(2)}$ は

$$\ddot{a}_{\infty}^{(2)} = 1 + r \cdot v + r^2 \cdot v^2 + \dots = \frac{1}{1 - r \cdot v} = \frac{1 + i}{1 + i - r}$$

$$\ddot{a}_{\infty}^{(1)} = \ddot{a}_{\infty}^{(2)}$$
 であるから、

$$\frac{1+i}{i} \cdot \left(1 + \frac{h}{i}\right) = \frac{1+i}{1+i-r} \Leftrightarrow h = \frac{i \cdot (r-1)}{1+i-r}$$

$$r=1+\frac{i}{4}$$
を代入して、 $h=\frac{i}{3}$

解答(B)

(2)

(A)
$$1+i=e^{\delta}=1+\delta+\frac{\delta^2}{2!}+\cdots>1+\delta$$
から、 $i>\delta$ より、誤り。

(B)
$$m_x = \frac{d_x}{L_x} = \frac{d_x}{\int_0^1 l_{x+t} dt} < \frac{d_x}{l_{x+1}} = \frac{q_x}{p_x}$$
 より、誤り。

(C)
$$s_{\overline{n}|}^{(k)} = \frac{(1+i)^n - 1}{i^{(k)}}$$
, $\overline{s}_{\overline{n}|} = \frac{(1+i)^n - 1}{\delta}$ \$\$\tau \text{\$\subset o} \sigma \sigma^{(k)} \text{\$\sigma^{(k)} \text{\$\sigma^{(

(E)
$$\bar{a}_x = \int_0^{\omega - x} v^t \cdot p_x dt < \int_0^{\infty} v^t dt = \frac{1}{\delta} \sharp \emptyset$$
, $\mathbb{E} \cup V$

解答 (C)、(E)

(3)

$$p_x^* = \frac{l_{x+1}}{l_x} = \frac{7,000}{10,000} = 0.700$$

であることを踏まえると、以下の連立方程式を得る。

$$\begin{cases}
0.700 = 1 - q_x^A - q_x^B - q_x^C \\
0.150 = q_x^{C*} = \frac{q_x^C}{1 - \frac{q_x^A}{2} - \frac{q_x^B}{2}}
\end{cases}$$

これにより、

$$0.150 = \frac{q_x^C}{1 - \frac{1}{2}(1 - 0.700 - q_x^C)}$$

これを解いて、

$$q_x^C = 0.137838$$

解答(C)

(4)

第t保険年度末における責任準備金を $V_{50:10|}^{[z]}$ と書くとき、

$${}_{t}V_{50:\overline{10}}^{[z]} = {}_{t}V_{50:\overline{10}} - \frac{\alpha}{\ddot{a}_{50:\overline{10}}} \cdot \ddot{a}_{50+t:\overline{10-t}} = 1 - \frac{\ddot{a}_{50+t:\overline{10-t}}}{\ddot{a}_{50:\overline{10}}} - \frac{\alpha}{\ddot{a}_{50:\overline{10}}} \cdot \ddot{a}_{50+t:\overline{10-t}} = 1 - (1+\alpha) \cdot \frac{\ddot{a}_{50+t:\overline{10-t}}}{\ddot{a}_{50:\overline{10}}}$$

となる。第5保険年度末における責任準備金が0.44883であるので、

$$1 - \left(1 + \alpha\right) \cdot \frac{\ddot{a}_{55:\overline{5}|}}{\ddot{a}_{50:\overline{10}|}} = 0.44883$$

となるが、与えられた年金現価の数値を代入して $\alpha = 0.039999$ を得る。

第1保険年度の危険保険料を計算するため、第1保険年度末の責任準備金を計算すると、

$$\ddot{a}_{51:\overline{9}|} = \frac{\ddot{a}_{50:\overline{10}|} - 1}{v \cdot (1 - q_{50})} = 8.131375$$
 であるから、

$$_{1}V_{50:\overline{10}|}^{[z]} = 1 - (1 + \alpha) \cdot \frac{\ddot{a}_{51:\overline{9}|}}{\ddot{a}_{50:\overline{10}|}} = 0.053720$$

したがって、第1保険年度の危険保険料は、

$$v \cdot q_{50} \cdot (1 - {}_{1}V_{50:\overline{10}|}^{[z]}) = 0.004101$$

となる。

解答(F)

(5)

(6)

払済保険の払済保険金額を S_1 とおくと、

$$S_{1} = \frac{{}_{t}W - {}_{t}L}{A_{x+t:\overline{n-t}|} + 0.002\ddot{a}_{x+t:\overline{n-t}|}} \Leftrightarrow {}_{t}L = {}_{t}W - S_{1} \cdot \left(A_{x+t:\overline{n-t}|} + 0.002\ddot{a}_{x+t:\overline{n-t}|}\right)$$

$$_{t}L = 0.46280 - 0.4 \times (0.86390 + 0.002 \times 13.74580) = 0.10624$$

延長保険の生存保険金額を S2 とおくと、

$$\begin{split} S_2 &= \frac{{}_{t}W - {}_{t}L - \left(1 - {}_{t}L\right) \cdot \left(A_{x+t:\overline{n-t}|}^{\perp} + 0.001\ddot{a}_{x+t:\overline{n-t}|}\right)}{A_{x+t:\overline{n-t}|} + 0.001\ddot{a}_{x+t:\overline{n-t}|}} \\ &= \frac{{}_{t}W - {}_{t}L - \left(1 - {}_{t}L\right) \cdot \left(A_{x+t:\overline{n-t}|} - A_{x+t:\overline{n-t}|}^{\perp} + 0.001\ddot{a}_{x+t:\overline{n-t}|}\right)}{A_{x+t:\overline{n-t}|} + 0.001\ddot{a}_{x+t:\overline{n-t}|}} \\ &= \frac{\left\{0.46280 - 0.10624 - \left(1 - 0.10624\right) \cdot \left(0.86390 - 0.81687 + 0.001 \cdot 13.74580\right)\right\}}{0.81687 + 0.001 \cdot 13.74580} \\ &= 0.36388 \end{split}$$

解答(G)

$$p_{50} = \exp(-\int_0^t \mu_{50+s} ds) = \exp(-\int_0^t \frac{ds}{90 - (50+s)}) = \frac{40 - t}{40}$$
同様にして、
$$p'_{70} = \exp(-\int_0^t \mu'_{70+s} ds) = \exp(-\int_0^t \frac{ds}{100 - (70+s)}) = \frac{30 - t}{30}$$

$${}_{t}p'_{70} = \exp(-\int_{0}^{t} \mu'_{70+s} ds) = \exp(-\int_{0}^{t} \frac{ds}{100 - (70 + s)}) = \frac{30 - t}{30}$$

$$_{\circ}q_{50,70}^{2} = 1 - {_{\circ}q_{50,70}^{1}} = 1 - \int_{0}^{30} (_{t}p_{50} \cdot \mu_{50+t})$$

$$\int_{0}^{2} q_{50,70}^{2} = 1 - \int_{0}^{30} \left(p_{50} \cdot \mu_{50+t} \cdot p_{70}' \right) dt = 1 - \int_{0}^{30} \left(\frac{40 - t}{40} \cdot \frac{1}{40 - t} \cdot \frac{30 - t}{30} \right) dt$$
$$= 1 - \frac{1}{1,200} \left[-\frac{1}{2} (30 - t)^{2} \right]_{0}^{30} = 0.625$$

解答(F)

問題2.

設問	解答	配点	設問	解答	配点
(1)	(C)	7点	(5)	(F)	7点
(2)	① (D) ② (F) ③ (I)	7 点	(6)	① (A) ② (J)	7 点
(3)	(F)	7点	(7)	(D)	7 点
(4)	(F)	7点	(8)	(H)	7点

※(2)、(6)は完答の場合のみ得点。

(1)

定常状態において、1年間におけるx歳以上の死亡者数はl,となる。

また、定常状態において、x 歳以上y 歳未満(x < y)の死亡者における死亡時年齢の平均は、 l_x およびx 歳以上の人口 T_x ($=\int_x^{\infty} l_t dt$)を用いて以下のように書ける。

$$\int_{x}^{y} t \cdot \frac{l_{t} \cdot \mu_{t}}{l_{x} - l_{y}} dt = \frac{1}{l_{x} - l_{y}} \cdot \int_{x}^{y} t \cdot l_{t} \cdot \mu_{t} dt = \frac{1}{l_{x} - l_{y}} \cdot \int_{x}^{y} t \cdot \left(-\frac{dl_{t}}{dt} \right) dt$$

$$= \frac{1}{l_{x} - l_{y}} \cdot \left(\left[-t \cdot l_{t} \right]_{t=x}^{t=y} + \int_{x}^{y} l_{t} dt \right) = \frac{x \cdot l_{x} - y \cdot l_{y} + T_{x} - T_{y}}{l_{x} - l_{y}}$$

特に、平均寿命 \hat{e}_0 は全死亡者における死亡時年齢の平均といえるので、上の式で x=0 、 $y=\omega$ とおいて $\hat{e}_0=\frac{T_0}{l_0}$ と書ける。

以上を踏まえると、問題の条件から、

•
$$\dot{e}_0 = \frac{T_0}{l_0} = 75.99$$
 $\Rightarrow T_0 = 75.99 l_0$

•
$$l_{20} = 0.9888 l_0$$

•
$$T_{20} = 0.7382T_0$$

•
$$T_{60} = 0.2339T_0$$

•
$$\frac{60l_{60} + T_{60}}{l_{60}} = 80.17$$

これらを解き、 l_{20} 、 l_{60} 、 T_0 、 T_{20} 、 T_{60} を l_0 で表すと、

$$l_{20} = 0.9888 l_0$$

$$l_{60} = 0.881213l_0$$

$$T_0 = 75.99l_0$$

$$T_{20} = 56.0958l_0$$

$$T_{60} = 17.7741l_0$$

したがって、20 歳以上 60 歳未満の死亡者における死亡時の平均年齢は、 $\frac{20l_{20}-60l_{60}+T_{20}-T_{60}}{l_{20}-l_{60}}=\frac{20\times0.9888l_0-60\times0.881213l_0+56.0958l_0-17.7741l_0}{0.9888l_0-0.881213l_0}=48.565$

 $\ddot{a}_{||} = \frac{1-v'}{1-v} = \frac{1-v'}{d}$ であることから、逓増定期保険の一時払純保険料 A は以下のように表すことができる。

$$\begin{split} &A = v \cdot q_{x} \cdot \ddot{a}_{1} + v^{2} \cdot {}_{||}q_{x} \cdot \ddot{a}_{2} + \dots + v^{n} \cdot {}_{|n-1|}q_{x} \cdot \ddot{a}_{n}| \\ &= \frac{1}{d} \cdot \left\{ v \cdot q_{x} \cdot (1-v) + v^{2} \cdot {}_{||}q_{x} \cdot (1-v^{2}) + \dots + v^{n} \cdot {}_{|n-1|}q_{x} \cdot (1-v^{n}) \right\} \\ &= \frac{1}{d} \cdot \left[\left\{ v \cdot q_{x} + v^{2} \cdot {}_{||}q_{x} + \dots + v^{n} \cdot {}_{|n-1|}q_{x} \right\} - \left\{ v^{2} \cdot q_{x} + v^{4} \cdot {}_{||}q_{x} + \dots + v^{2n} \cdot {}_{|n-1|}q_{x} \right\} \right] \end{split}$$

ここで、 $v^2 = \frac{1}{1 + (i^2 + 2i)}$ であることから、上式の 2 番目の{}は予定利率 $i^2 + 2i$ の保険金年度末支

払の定期保険の一時払純保険料 $A^{[i^2+2i]}$ である。したがって、Aは次のとおり表せる。

$$A = \frac{1}{d} \cdot (A^{[i]} - A^{[i^2 + 2i]})$$

解答① (D) ② (F) ③ (I)

(3)

Thiele の微分方程式に条件を入力し、

$$\frac{d_{t}V^{(\infty)}}{dt} = (\mu_{x+t} + \delta) \cdot {}_{t}V^{(\infty)} + P^{(\infty)} - 0.6\mu_{x+t} \cdot {}_{t}V^{(\infty)}$$

$$\Rightarrow \frac{d_{t}V^{(\infty)}}{dt} = (0.4\mu_{x+t} + \delta) \cdot {}_{t}V^{(\infty)} + P^{(\infty)}$$

$$\Rightarrow \frac{d_{t}V^{(\infty)}}{dt} - 0.01_{t}V^{(\infty)} = P^{(\infty)}$$

$$\Rightarrow e^{0.01t} \cdot \frac{d}{dt} ({}_{t}V^{(\infty)} \cdot e^{-0.01t}) = P^{(\infty)}$$

$$\Rightarrow \frac{d}{dt} ({}_{t}V^{(\infty)} \cdot e^{-0.01t}) = P^{(\infty)} \cdot e^{-0.01t}$$

が得られる。両辺を 0 < t < 10 の範囲で積分し、 $_0 V^{(\infty)} = 0$ 、 $_{10} V^{(\infty)} = 1$ であることを用いて計算すると

解答(F)

(4)

特別条件体および標準体のファクラーの再帰式から、
$${}_{t}V'+P'=v\cdot q'_{x+t}+v\cdot (1-q'_{x+t})\cdot {}_{t+1}V'$$

$${}_{t}V+P=v\cdot q_{x+t}+v\cdot (1-q_{x+t})\cdot {}_{t+1}V$$
辺々差し引いて
$$({}_{t}V'-{}_{t}V)+(P'-P)=v\cdot (q'_{x+t}-q_{x+t})+v\cdot (1-q'_{x+t})\cdot {}_{t+1}V'-v\cdot (1-q_{x+t})\cdot {}_{t+1}V'$$

$$=v\cdot (q'_{x+t}-q_{x+t})\cdot (1-{}_{t+1}V)+v\cdot (1-q'_{x+t})\cdot ({}_{t+1}V'-{}_{t+1}V)$$
ここで、 $v^{x+t}\cdot l'_{x+t}$ を両辺にかけて足し合わせると、
$$\sum_{k=0}^{n-1}D'_{x+k}\cdot \left\{\left({}_{k}V'-{}_{k}V\right)+\left(P'-P\right)\right\}$$

$$=\sum_{k=0}^{n-1}D'_{x+k}\cdot \left\{v\cdot (q'_{x+k}-q_{x+k})\cdot (1-{}_{k+1}V)+v\cdot (1-q'_{x+k})\cdot ({}_{k+1}V'-{}_{k+1}V)\right\}$$
上記を整理すると、
$$\sum_{k=0}^{n-1}D'_{x+k}\cdot \left({}_{k}V'-{}_{k}V\right)+(N'_{x}-N'_{x+n})(P'-P)$$

$$P' - P = \frac{1}{N'_{x} - N'_{x+n}} \begin{cases} \sum_{k=0}^{n-1} D'_{x+k} \cdot \left\{ v \cdot (q'_{x+k} - q_{x+k}) \cdot (1 - {}_{k+1}V) \right\} \\ + \sum_{k=0}^{n-1} D'_{x+k+1} \cdot ({}_{k+1}V' - {}_{k+1}V) - \sum_{k=0}^{n-1} D'_{x+k} \cdot \left({}_{k}V' - {}_{k}V \right) \end{cases}$$

$$= \frac{1}{N'_{x} - N'_{x+n}} \begin{cases} \sum_{k=0}^{n-1} D'_{x+k} \cdot \left\{ v \cdot (q'_{x+k} - q_{x+k}) \cdot (1 - {}_{k+1}V) \right\} \\ + D'_{x+n} \cdot ({}_{n}V' - {}_{n}V) - D'_{x} \cdot ({}_{0}V' - {}_{0}V) \end{cases}$$

と変形できる。ここで、 $_{n}V'=_{n}V=_{0}V'=_{0}V=0$ であるため、

$$P' - P = \frac{1}{N'_{x-1} - N'_{x+1}} \sum_{k=0}^{n-1} v \cdot D'_{x+k} \cdot (q'_{x+k} - q_{x+k}) \cdot (1 - {}_{k+1}V)$$

となる。よって、

$$\bigcirc = {}_{k+1}V$$

となる。

解答:(F)

(5)

保険内容変更前の予定新契約費率を α_1 、予定集金費率を β 、年金開始前の予定維持費率を γ 、年金開始後の予定維持費率を γ とする。

保険内容変更前の年金原資をFlとすると、

$$F_1 = (1 + \gamma') \frac{2N_{60} - N_{70}}{D_{60}}$$

である。Prを用いて収支相等の式を書くと

$$P_{\!_{1}}\cdot\ddot{a}_{_{40:\overline{20}\,|}} = \frac{D_{_{60}}}{D_{_{40}}}\cdot F_{_{1}} + P_{\!_{1}}\cdot \left(\mathit{IA}\right)^{_{1}}_{_{40:\overline{20}\,|}} + \alpha_{_{1}}\cdot F_{_{1}} + \beta\cdot P_{_{1}}\cdot \ddot{a}_{_{_{40:\overline{20}\,|}}} + \gamma\cdot F_{_{1}}\cdot \ddot{a}_{_{_{40:\overline{20}\,|}}}$$

であるから、これを解くと

$$P_{1} = \frac{\frac{D_{60}}{D_{40}} + \alpha_{1} + \gamma \cdot \ddot{a}_{_{40:20}}}{\left(1 - \beta\right) \cdot \ddot{a}_{_{40:20}} - \left(IA\right)_{_{40:20}}^{1} \cdot F_{1}}$$

同様に、保険内容変更後の年金原資を F_2 、保険内容変更後の予定新契約費率を α_2 とすると、

$$\begin{split} F_2 &= (1 + \gamma') \frac{N_{60}}{D_{60}} \\ P_2 &= \frac{\frac{D_{60}}{D_{40}} + \alpha_2 + \gamma \cdot \ddot{a}_{40:\overline{20}|}}{\left(1 - \beta\right) \cdot \ddot{a}_{40:\overline{20}|} - \left(IA\right)_{40:\overline{20}|}^1} \cdot F_2 \end{split}$$

$$\begin{split} \frac{P_2}{P_1} &= \frac{\left(\frac{D_{60}}{D_{40}} + \alpha_2 + \gamma \cdot \ddot{a}_{40:\overline{20}}\right) \cdot F_2}{\left(\frac{D_{60}}{D_{40}} + \alpha_1 + \gamma \cdot \ddot{a}_{40:\overline{20}}\right) \cdot F_1} \\ &= \frac{\left(\frac{D_{60}}{D_{40}} + \alpha_2 + \gamma \cdot \frac{N_{40} - N_{60}}{D_{40}}\right) \cdot N_{60}}{\left(\frac{D_{60}}{D_{40}} + \alpha_1 + \gamma \cdot \frac{N_{40} - N_{60}}{D_{40}}\right) \cdot \left(2N_{60} - N_{70}\right)} \\ &= \frac{\left(\frac{50,219}{65,692} + 0.03 + 0.001 \cdot \frac{2,199,256 - 1,027,831}{65,692}\right) \cdot 1,027,831}{\left(\frac{50,219}{65,692} + 0.05 + 0.001 \cdot \frac{2,199,256 - 1,027,831}{65,692}\right) \cdot \left(2 \cdot 1,027,831 - 568,678\right)} \\ &= 0.67461 \end{split}$$

(6)

40 歳加入、保険期間 25 年の平準年払営業保険料を $P_{40\cdot 23}^*$ 、45 歳加入、保険期間 20 年の平準年払 営業保険料を $P_{45:20}^*$ とする。

解答:①(A)②(J)

$$\begin{split} i_x &= l_{x+1}^{ii} - l_x^{ii} + d_x^{ii} = l_{x+1}^{ii} - l_x^{ii} + l_x^{ii} \cdot q_x^i + \frac{1}{2} i_x \cdot q_x^i \downarrow \mathcal{V} \, , \quad i_x = \frac{l_{x+1}^{ii} - l_x^{ii} \cdot \left(1 - q_x^i\right)}{1 - \frac{1}{2} q_x^i} \\ q_x^{(i)} &= \frac{i_x}{l_x^{aa}} = \frac{l_{x+1}^{ii} - l_x^{ii} \cdot \left(1 - q_x^i\right)}{l_x^{aa} \cdot \left(1 - \frac{1}{2} q_x^i\right)} \\ &\stackrel{\triangle}{\text{TD}} \mathcal{O} \, \text{分子} \cdot \, \text{分母を} \, l_x \, \text{で割} \, \mathcal{V} \, , \\ \frac{l_{x+1}^{ii}}{l_x} &= \frac{l_{x+1}^{ii}}{l_{x+1}} \cdot \frac{l_{x+1}}{l_x} = K_{x+1} \cdot \left(1 - q_x\right) \, , \quad \frac{l_x^{aa}}{l_x} = 1 - \frac{l_x^{ii}}{l_x} = 1 - K_x \, \text{を代入すると} \, , \\ q_x^{(i)} &= \frac{K_{x+1} \cdot \left(1 - q_x\right) - K_x \cdot \left(1 - q_x^i\right)}{\left(1 - K_x\right) \cdot \left(1 - \frac{1}{2} q_x^i\right)} \end{split}$$

(8)

手術種類 1 の予定手術発生率を q_1^c とし、手術種類 2 の予定手術発生率を q_2^c とする。 与えられた条件から、

$$q_1^c = 2q_2^c$$

一時払純保険料 P は、

$$\begin{split} P &= A_{x: \overline{20}|} + v^{\frac{1}{2}} \cdot q_{1}^{c} \cdot \sum_{t=1}^{20} \frac{D_{x+t-1}}{D_{x}} \left(2 - \frac{t}{20} \right) + v^{\frac{1}{2}} \cdot q_{2}^{c} \cdot \sum_{t=1}^{20} \frac{D_{x+t-1}}{D_{x}} \left(3 - \frac{t}{20} \right) \\ &= A_{x: \overline{20}|} + 2v^{\frac{1}{2}} \cdot q_{2}^{c} \cdot \sum_{t=1}^{20} \frac{D_{x+t-1}}{D_{x}} \left(2 - \frac{t}{20} \right) + v^{\frac{1}{2}} \cdot q_{2}^{c} \cdot \sum_{t=1}^{20} \frac{D_{x+t-1}}{D_{x}} \left(3 - \frac{t}{20} \right) \\ &= A_{x: \overline{20}|} + v^{\frac{1}{2}} \cdot q_{2}^{c} \cdot \left(7\ddot{a}_{x: \overline{20}|} - \frac{3}{20} (I\ddot{a})_{x: \overline{20}|} \right) \end{split}$$

与えられた条件から、

$$A_{x:\overline{20}|} + v^{\frac{1}{2}} \cdot q_2^c \cdot \left(7\ddot{a}_{x:\overline{20}|} - \frac{3}{20} (I\ddot{a})_{x:\overline{20}|}\right) = 1$$

したがって、以下のとおり式変形できる。

$$q_{2}^{c} = \frac{1 - A_{x:\overline{20}|}}{v^{\frac{1}{2}} \cdot \left(7\ddot{a}_{x:\overline{20}|} - \frac{3}{20}(I\ddot{a})_{x:\overline{20}|}\right)}$$

$$= \frac{1 - 0.81}{\left(\frac{1}{1 + 0.01}\right)^{\frac{1}{2}} \cdot \left(7 \times 18.1 - 0.15 \times 183.5\right)}$$

$$= 0.0019254$$

よって手術種類 1 の予定手術発生率は、 $q_1^c = 2q_2^c = 0.0038508$

解答(H)

問題3.

設問		解答	配点	設問		解答	配点	
(1)	(i)	1	(工)	1点	(2)	(i)	(B))
		2	(才)	∫ (完答のみ)		(2	(C)	1点
		3	(タ)	1点			(D)	(完答のみ)
		4	(11)	∫ (完答のみ)		(2	(1)])
		(5)	(ス)	2点		(F	(L)	
		6	(ス)	」(完答のみ)		(6	(0)	2点
	(ii)	7	(カ)	1点		C	(P)	(完答のみ)
		8	(G)	1点		(8	(G)	J
		9	(G)	1点		(9	(W)]]
		10	(C)	3 点		(1	(X)	2点
						(I	(T)	(完答のみ)
						(I	(A)	J
						(ii)	(C)	5 点

※(2)(i)の①と②は順不同。

(1)

(i) まず、平均余命を用いて死力を表すことを考える。

 $\frac{d_t p_x}{dx}$ を死力 μ_x を用いて表すと、

$$\frac{d_{t} p_{x}}{dx} = \frac{d}{dx} \left(\frac{l_{x+t}}{l_{x}} \right) = \frac{\left(\frac{d}{dx} l_{x+t} \right) \cdot l_{x} - l_{x+t} \cdot \left(\frac{d}{dx} l_{x} \right)}{\left(l_{x} \right)^{2}}$$

$$= \frac{\left(-\mu_{x+t} \cdot l_{x+t} \right) \cdot l_{x} - l_{x+t} \cdot \left(-\mu_{x} \cdot l_{x} \right)}{\left(l_{x} \right)^{2}} = {}_{t} p_{x} \cdot \left(\boxed{1} \mu_{x} - \boxed{2} \mu_{x+t} \right) \quad \cdots \quad (1)$$

と書くことができる。次に、 $\frac{d\mathring{e}_x}{dx}$ を考えると、(I)を用いて

$$\frac{d\mathring{e}_{x}}{dx} = \frac{d}{dx} \int_{0}^{\infty} p_{x} dt = \int_{0}^{\infty} \frac{d_{t} p_{x}}{dx} dt = \int_{0}^{\infty} p_{x} \cdot (\mu_{x} - \mu_{x+t}) dt$$

$$= \mu_{x} \cdot \int_{0}^{\infty} p_{x} dt - \int_{0}^{\infty} p_{x} \cdot \mu_{x+t} dt = \boxed{3 \mu_{x} \cdot \mathring{e}_{x}} - \boxed{41}$$

となる。ここで上式を μ_x について整理すると

$$\mu_{x} = \frac{1}{\boxed{\boxed{\boxed{\^{o}\mathring{e}_{x}}}}} + \frac{1}{\boxed{\boxed{\^{o}\mathring{e}_{x}}}} \cdot \frac{d\mathring{e}_{x}}{dx} \quad \cdots \quad (\text{ II })$$

となり、平均余命を用いて死力を表すことができた。

(ii) この集団に対して、満年齢 60 歳における平均余命が 22 年であることがわかっている。このとき、この集団の満年齢 60 歳に対する死亡率 q_{60} を求めたい。なお、満年齢 61 歳における平均余命は 21.2 年であることがわかっている。また、1 年を通じて死亡が一様に発生するものとし、各満年齢間の平均余命は線形で近似されるものとする。

1年を通じて死亡が一様に発生することから、 $l_{x+t} = l_x - d_x \cdot t$ $(0 \le t \le 1)$ であることより、x 歳

の中央死亡率
$$m_x = \frac{d_x}{\int_0^1 l_{x+t} dt} = \frac{d_x}{\int_0^1 (l_x - d_x \cdot t) dt} = -\frac{-d_x}{l_x - \frac{1}{2} \cdot d_x} = -\frac{\frac{d}{dt} l_{x+t}}{l_{t = \frac{1}{2}}} = \boxed{?\mu_{x + \frac{1}{2}}}$$
 であるこ

とがわかる。(死力を用いて表すこと)

一方、前提より各満年齢間の平均余命は線形で近似されるため $\hat{e}_{60.5} = \frac{1}{2} \cdot (22.0 + 21.2) = 21.6$

であることと、(II)より
$$\mu_{60.5} = \frac{1}{21.6} + \frac{1}{21.6} \cdot (21.2 - 22) = 0.0092593$$
より 80.00926 である

$$q_{60} = \frac{m_{60}}{1 + \frac{1}{2} \cdot m_{60}} = 0.0092173$$

(2)

(i) この保険の平準年払営業保険料をPとしたとき、 $(a)\sim(c)$ にかかる給付現価は、

(a)
$$\frac{0.5 \cdot \left(\boxed{1}D_{12} + \boxed{2}D_{15} \right) + \boxed{3}D_{18}}{D_{3}}$$
(b)
$$H \cdot \left(\boxed{4}N_{3} - \boxed{5}N_{18} - \boxed{6}N_{3,40} - \boxed{7}N_{18,40} \right)$$

と表すことができる。

(ii) 収支相等の原則から、

$$P \cdot \frac{N_{3,40} - N_{18,55}}{D_{3,40}} = \frac{0.5 \cdot \left(D_{12} + D_{15}\right) + D_{18}}{D_3} + H \cdot \left(\frac{N_3 - N_{18}}{D_3} - \frac{N_{3,40} - N_{18,55}}{D_{3,40}}\right) + P \cdot \frac{R_3 - R_{18} - 15M_{18}}{D_3} + 0.025 + 0.03 \cdot P \cdot \frac{N_{3,40} - N_{18,55}}{D_{3,40}} + 0.001 \cdot \frac{N_{3,40} - N_{18,55}}{D_{3,40}} + 0.005 \cdot H \cdot \left(\frac{N_3 - N_{18}}{D_3} - \frac{N_{3,40} - N_{18,55}}{D_{3,40}}\right)$$

であるので、

$$P = \frac{0.025 + \frac{0.5 \cdot \left(D_{12} + D_{15}\right) + D_{18}}{D_3} + 0.001 \cdot \frac{N_{3,40} - N_{18,55}}{D_{3,40}} + 1.005 \cdot H \cdot \left(\frac{N_3 - N_{18}}{D_3} - \frac{N_{3,40} - N_{18,55}}{D_{3,40}}\right)}{0.97 \frac{N_{3,40} - N_{18,55}}{D_{3,40}} - \frac{R_3 - R_{18} - 15M_{18}}{D_3}}$$

とできる。ここでH=0.4、 $\ddot{a}_{_{3,40:1\overline{5}]}}=13.9799$ および与えられた基数を用いれば、

$$P = \frac{ \left\{ 0.025 + \frac{0.5 \cdot \left(90,028 + 87,743\right) + 85,488}{97,240} + 0.001 \cdot 13.9799 \right\} \\ + 1.005 \cdot 0.4 \cdot \left(\frac{5,558,673 - 4,184,055}{97,240} - 13.9799 \right) \right\} }{0.97 \cdot 13.9799 - \frac{3,871,398 - 3,116,607 - 15 \times 50,222}{97,240} }$$

=0.13990

解答(C)

以上