数学 (問題)

[問題1から問題3を通じて必要であれば(付表)に記載された数値を用いなさい。]

問題1.次の(1)~(12)の各間について、空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から1つ選び、解答用紙の所定の欄にマークしなさい。なお、同じ選択肢を複数回選択してもよ 各5点(計60点) い。

(1) ある製品	品を生産	する機械	が3台あ	り、そ	これを	X,	Y,	Z とす	つる。	X,	Y,	Z t^2	とれる	ごれ製	品全
	体の20%	, 30%,	50%を	生産する	ら。また	ż、Υ	から	生産さ	される	製品の	のう t	5 2%	の割合	うでる	「良品	が含
	まれること	とが経験	的に知ら	れている	5. 11	ま、集	製品が	不良	品であ	ると	き、	それだ	is X ,	Y,	$Z \mathcal{O}$	各機
	械から生産	全された	ものであ	る確率の	比はる	それそ	ごれ8:	6:5	の関係	系にあ	るこ	とがら	分かっ	た。	このと	:き、
	X から生	産される	製品の	うち不良品	品が含	まれる	る割合	は		% 7	ごある) ₀				

- (A) 0.5
- **(B)** 1.0
- (C) 1.5
- (D) 2.0

- (E) 2.5
- (F) 3.0
- (**G**) 3.5
- **(H)** 4.0

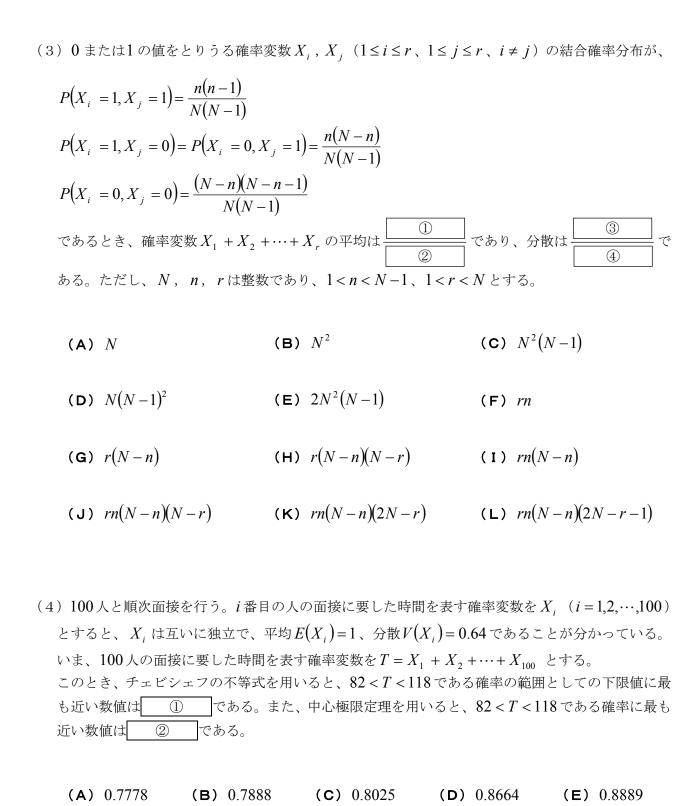
(2)確率変数 X , Y は互いに独立で、それぞれ平均 $\frac{1}{2\lambda}$, λ (λ > 0) の指数分布に従うとき、 確率変数 $Z = \frac{X}{V}$ の確率密度関数g(z)は、

$$g(z) = \begin{cases} \boxed{\boxed{\bigcirc}} & (z > 0) \\ \boxed{\boxed{\bigcirc}} & (z \le 0) \end{cases}$$

である。

- (A) 1 (B) 2 (C) λ (D) λ^2 (E) $2\lambda^2$

- (F) $(z+1)^2$ (G) $(z+2)^2$ (H) $(z+2\lambda^2)^2$ (I) $(2z+1)^2$ (J) $(2\lambda^2z+1)^2$



(H) 0.9544

(I) 0.9756

(J) 0.9980

(**G**) 0.9506

(F) 0.9012

(5) n 枚のカードに、 $1,2,\dots,n$ $(n \ge 4)$ の数字がそれぞれ1つ記入されている。このカードの中から 無作為に4枚のカードを同時に抜き出す。この4枚のカードに記入された数字のうち2番目に大き な数字を表わす確率変数をXとするとき、X = k (k は $3 \le k \le n-1$ を満たす整数)となる確率 P(X=k)it,

$$P(X = k) = \frac{\begin{pmatrix} \boxed{1} & \boxed{3} & \boxed{3} \\ \boxed{2} & \boxed{1} \end{pmatrix} \cdot \begin{pmatrix} \boxed{3} & \boxed{1} \\ \boxed{1} & \boxed{4} \end{pmatrix}$$

である。

また、Xの期待値E(X)は、

$$E(X) = \frac{\boxed{\textcircled{4}}}{\boxed{\textcircled{5}}}$$

である。

【ヒント】

必要に応じて以下の関係式を使用してもよい。

$$r \cdot \binom{r-1}{s-1} = s \cdot \binom{r}{s}$$

$$\cdot \sum_{i=u}^{v} \binom{i}{u} = \binom{v+1}{u+1}$$

ここで、r,s はそれぞれ 2 以上の整数、u,v はそれぞれ 1 以上の整数である。

(F)
$$n-1$$

(H)
$$n+1$$

(I)
$$2(n+1)$$
 (J) $3(n+1)$

$$(1) 3(n+1)$$

(K)
$$n(n-1)$$
 (L) $n(n+1)$

$$(1)$$
 $n(n+1)$

(M)
$$k-1$$

(N)
$$k$$

(O)
$$k+1$$

(P)
$$2k-1$$

(a)
$$2k+1$$

(P)
$$2k-1$$
 (Q) $2k+1$ (R) $n-k-1$ (S) $n-k$ (T) $n-k+1$

(S)
$$n-k$$

$$(T)$$
 $n-k+1$

(6) 互いに独立で分散が異なる2つの母集団A,Bから、それぞれ大きさ10,12の標本を抽出し、 標本変量平均 $\overline{X} = \frac{1}{10}\sum_{i=1}^{10}X_i$, $\overline{Y} = \frac{1}{12}\sum_{i=1}^{12}Y_i$ を作った。このとき、A, B 両母集団の分散をそれぞ れ $\sigma_A^2=4$, $\sigma_B^2=8$ とすると、標本変量 $M=\alpha\cdot\overline{X}+(1-\alpha)\cdot\overline{Y}$ $(0\leq \alpha\leq 1)$ の分散を最小にする α に最も近い数値は である。

- (A) 0.2308
- **(B)** 0.2941
- (C) 0.3750
- **(D)** 0.4186

- (E) 0.5814
- (F) 0.6250
- (G) 0.7059
- (H) 0.7692

(7) ある資材置場に存在する無数の資材を複数のトラックで運び出している。まず、無作為に選んだ 6台の各トラックに積まれた資材の重量を調べたところ、次のとおりであることが分かった。

3.2, 2.8, 3.8, 3.7, 3.5, 4.0

次に、改めて30台のトラックを無作為に選び、この30台分のトラックで運び出された資材の総重 量を求めた。この総重量の分散について区間推定を行ったとき、信頼係数を95%とした場合の信頼 区間の下限に最も近い数値は ① であり、上限に最も近い数値は ② である。ただし、 各トラックに積まれる資材の重量は正規分布(母平均は未知)に従うものとする。

- (A) 1.8703
- **(B)** 1.9932
- (C) 2.2443
- **(D)** 2.2872
- **(E)** 2.6015

- (F) 17.6104 (G) 23.2765 (H) 25.1419 (I) 28.8739 (J) 34.6487

(8	3)ある会社の従来型の製品の寿命の平均は、1,000時間であるとされていた。しかし、この会社は、
	新型の製品の寿命の平均は従来型より改善して1,200時間であると主張している。そこで、この主
	張が正しいかどうかを確認するために、帰無仮説を「新型の製品の寿命の平均は1,000時間である」、
	対立仮説を「新型の製品の寿命の平均は1,200時間である」として、この仮説を検定することとし
	た。検定に用いる標本数を25個、第1種の誤りの起こる確率を1%とした場合、この検定における
	検出力(第2種の誤りが起こらない確率)に最も近い数値は である。ただし、この製品
	の寿命は正規分布に従うものとし、新型の製品の寿命の標準偏差は従来型と同じく 204 時間である
	とする。

(A) 0.0001 (B) 0.0050 (C) 0.0100 (D) 0.0892

(E) 0.9108 (F) 0.9900 (G) 0.9950 (H) 0.9999

(9) ある大学のある科目では、学期を通じて講義を行った後に、学期末の試験結果によって合格・不合格が評価される。ある学期において、この科目を受講した学生の講義出席率と試験結果は、次の表のようになった。

講義出席率	100%	50%以上	50%未満
試験結果		100% 未満	
合格	15人	32人	18人
不合格	6人	11人	18人

このとき、講義出席率と試験結果について独立性の検定を行う。 帰無仮説 H_0 を「講義出席率と試験結果とは互いに独立である」とすると、

有意水準 1% の場合、帰無仮説 H_0 は ① される。

有意水準 5%の場合、帰無仮説 H_0 は ② される。

有意水準10% の場合、帰無仮説 H_0 は ③ される。

(A) 採択 (B) 棄却

(10)(x,y)のデータが下表のとおり与えられている。定数項ダミーを用いてtが奇数の場合と偶数の 場合で定数項 α を変えた回帰式 $y = \alpha + \beta x$ を推定する。このとき、 α に最も近い数値は、tが奇数 の場合は ① であり、t が偶数の場合は ② である。また、 β に最も近い数値は、t が 奇数の場合、偶数の場合ともに ③ である。

t	1	2	3	4
x	0.9	1.8	2.7	4.0
У	4.6	13.6	10.9	20.5

「①の選択肢〕

- (A) 1.4500
- **(B)** 1.5215
- **(C)** 1.5738
- (D) 1.6388

- **(E)** 1.7697
- **(F)** 1.8421
- **(G)** 1.8854
- **(H)** 1.9237

「②の選択肢〕

- **(A)** 7.4468
- **(B)** 7.5317
- (C) 7.5891
- **(D)** 7.6533

- (E) 7.7162
- **(F)** 7.7839
- **(G)** 7.8472
- **(H)** 7.9545

[③の選択肢]

- (A) 3.1364
- **(B)** 3.2822
- (C) 3.5000
- **(D)** 3.7031

- (E) 3.8689
- (F) 4.1269
- (**G**) 4.3519
- **(H)** 4.4743

(11) $\mathit{MA}(2)$ モデル $Y_t = 2.0 + \varepsilon_t - 0.8\varepsilon_{t-1} - 0.2\varepsilon_{t-2}$ ($E(\varepsilon_t) = 0, V(\varepsilon_t) = 0.8$) に対して、 $\left\{Y_t\right\}$ の時差 1の自己相関 ho_1 に最も近い数値は $\overline{ }$ である。また、時差 $\overline{ }$ の自己相関 $\overline{ }
ho_2$ に最も近い数値 は ② である。

- (A) -0.57 (B) -0.51 (C) -0.38 (D) -0.25 (E) -0.12

- **(F)** 0.12
- (G) 0.25
- (H) 0.38
- **(I)** 0.51
- (J) 0.57

(12) 確率変数Yは、確率0.3で平均0.5の指数分布に従い、確率0.7で[-3,3]上の一様分布に従うものとする。このとき、以下の手順に従ってYの値をシミュレートする。

「手順〕

- 1. [0,1]上の一様分布に従う確率変数から、10個の乱数 x_1,x_2,\cdots,x_{10} を発生させる。
- 2. 乱数 x_1 を、Yが指数分布または一様分布のどちらに従うかに対応させる。数値が0.3以下の場合はYは指数分布に従い、その他の場合はYは一様分布に従うものとする。
- 3. 乱数x,を用い、逆関数法によりYの値を求める。
- 4. 残り8つの乱数 x_3, x_4, \dots, x_{10} についても、添え字の小さいものから順番に上記2.、3. の手順を繰り返し、合計5つのYの値をシミュレートする。

手順1. によって、下表の10個の乱数が得られたとき、上記のシミュレーションによって求められるYの値の平均値に最も近い数値は である。

x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
0.27	0.55	0.56	0.64	0.76	0.56	0.10	0.75	0.84	0.48

(A)	0.0025	(B) 0.0841	(C) 0.2593	(D) 0.4345

(E) 0.6097 (F) 0.7848 (G) 0.9600 (H) 1.1352

- 問題2.【ルール1】から【ルール3】のもとで、サイコロを振る試行を繰り返す。このとき、次の(1) ~ (3) の各問について、空欄に当てはまる最も適切なものをそれぞれの選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。なお、同じ選択肢を複数回選択してもよい。 (20点)
 - (1) 【ルール1】のもとで、サイコロを振る試行を繰り返す。

【ルール1】:

1つのサイコロを振る試行を繰り返し、はじめて6の目が出た時点で試行を終了する。

サイコロを振る回数を表す確率変数をXとすると、X=i $(i \ge 1)$ となる確率P(X=i) は、i 回目の試行ではじめて6 の目が出る確率であるから、

となる。したがって、サイコロを振る回数の期待値E(X)は、

$$E(X) = \sum_{i=1}^{\infty} i \times P(X=i) = \boxed{3}$$

となる。

(2) 【ルール2】のもとで、サイコロを振る試行を繰り返す。

【ルール2】:

1つのサイコロを振る試行を繰り返し、はじめて6の目が出た時点で試行を終了する。 ただし、試行はn+1回以上行わない。すなわち、サイコロをn回振って6の目が一度も出なかった場合でも、それ以上サイコロは振らないこととする。(試行はn回で終了する)。

サイコロを振る回数を表す確率変数をYnとする。

I) n=1の場合

1 回目に6 の目が出ても出なくても試行は1 回で終了するため、サイコロを振る回数の期待値 $E(Y_1)$ は、 $E(Y_1)$ = 4 となる。

Ⅱ) n≥2の場合

1回目に6の目が出た場合と、1回目にその他の目が出た場合に分けて考えると、サイコロを振る回数の期待値 $E(Y_n)$ は漸化式を用いて、

$$E(Y_n) = \boxed{ } \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \times E(Y_{n-1})$$

と表される。この漸化式を解くと、サイコロを振る回数の期待値 $E(Y_n)$ は、

(3) 【ルール3】のもとで、サイコロを振る試行を繰り返す。

【ルール3】:

1つのサイコロを振る試行を繰り返し、はじめて5の目と6の目が出そろった時点(5の目が 先に出た場合は、そこからさらに6の目がはじめて出た時点、6の目が先に出た場合は、そこ からさらに5の目がはじめて出た時点)で試行を終了する。ただし、試行はn+1回以上行わな い。すなわち、サイコロをn回振って5の目と6の目が出そろわなかった場合でも、それ以上 サイコロは振らないこととする。(試行はn回で終了する)。

例えばn=8の場合、

サイコロの目が順に、1,5,5,2,6であれば、サイコロを振る回数は5回となる。

(5回目で、はじめて5の目と6の目が出そろったため、5回で終了する。) サイコロの目が順に、1,5,5,2,4,5,3,6であれば、サイコロを振る回数は8回となる。

(8回目で、はじめて5の目と6の目が出そろったため、8回で終了する。) サイコロの目が順に、1,5,5,2,4,5,3,2であれば、サイコロを振る回数は8回となる。

(8回振って5の目と6の目が出そろわなかった場合であり、8回で終了する。)

サイコロを振る回数を表す確率変数を Z_n とする。

I) n=1の場合

1回目にどの目が出ても試行は1回で終了するため、サイコロを振る回数の期待値 $E(Z_1)$ は、 $E(Z_1)=$ ⑩ となる。

II) n≥2の場合

1回目に5または6の目が出た場合と、1回目にその他の目が出た場合に分けて考えると、サイコロを振る回数の期待値 $E(Z_n)$ は漸化式を用いて、

と表される。ここで、 Y_n は上記(2)で定義した確率変数 Y_n を表す。

この漸化式を解くと、サイコロを振る回数の期待値 $E(Z_n)$ は、

[①、②、③、④、⑤、⑥、⑦、⑧、⑩、⑪、⑫、⑬、⑭、⑮、⑰の選択肢]

(o)
$$\frac{2}{15}$$

(P)
$$\frac{1}{6}$$

(Q)
$$\frac{1}{5}$$

(R)
$$\frac{1}{3}$$

(s)
$$\frac{1}{2}$$

(T)
$$\frac{2}{3}$$

(U)
$$\frac{5}{6}$$

(V)
$$\frac{7}{6}$$

(w)
$$\frac{6}{5}$$

(x)
$$\frac{11}{6}$$

(Y)
$$\frac{21}{2}$$

(z)
$$\frac{41}{2}$$

[⑨、⑯、⑱の選択肢]

(A)
$$\left(\frac{1}{12}\right)^{n-1}$$

(B)
$$\left(\frac{1}{10}\right)^{n-1}$$

(c)
$$\left(\frac{1}{6}\right)^{n-1}$$

(D)
$$\left(\frac{1}{5}\right)^{n-1}$$

(E)
$$\left(\frac{1}{4}\right)^{n-1}$$

(F)
$$\left(\frac{1}{3}\right)^{n-1}$$

(G)
$$\left(\frac{2}{5}\right)^{n-1}$$

(H)
$$\left(\frac{5}{12}\right)^{n-1}$$

(I)
$$\left(\frac{1}{2}\right)^{n-1}$$

(J)
$$\left(\frac{7}{12}\right)^{n-1}$$
 (K) $\left(\frac{3}{5}\right)^{n-1}$

(K)
$$\left(\frac{3}{5}\right)^{n-1}$$

(L)
$$\left(\frac{2}{3}\right)^{n-1}$$

(M)
$$\left(\frac{3}{4}\right)^{n-1}$$

(N)
$$\left(\frac{4}{5}\right)^{n-1}$$

$$(0) \left(\frac{5}{6}\right)^{n-1}$$

(P)
$$\left(\frac{11}{12}\right)^{n-1}$$

問題3.次の(1)、(2)の各問について、空欄に当てはまる最も適切なものをそれぞれの選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。なお、同じ選択肢を複数回選択してもよい。 (20点)

(1) 順序統計量

確率密度関数が f(x) $(-\infty < x < \infty)$ なる分布をもつ母集団から、大きさn の標本値 (x_1, x_2, \cdots, x_n) を取り出し、小さいものから順に並べて $x_{(1)}, x_{(2)}, \cdots, x_{(n)}$ としたときの確率変数 $X_{(t)}$ をt番目の順序統計量という。

以下では、k個(k < n)の順序統計量 $X_{(t_1)}, X_{(t_2)}, \cdots, X_{(t_k)}$ $(t_1 < t_2 < \cdots < t_k)$ の同時確率密度関数

$$f_{X_{(t_1)},X_{(t_2)},\cdots,X_{(t_k)}}ig(x_{(t_1)},x_{(t_2)},\cdots,x_{(t_k)}ig)$$
を考える。

いま、下図を参考に

$$x_{(t_1)} \leq X_{(t_1)} \leq x_{(t_1)} + dx_{(t_1)}, \quad x_{(t_2)} \leq X_{(t_2)} \leq x_{(t_2)} + dx_{(t_2)}, \cdot \cdot \cdot \cdot, \quad x_{(t_k)} \leq X_{(t_k)} \leq x_{(t_k)} + dx_{(t_k)}$$
 の同時確率 P を求めると、

$$\begin{split} P\big(X_{(1)},\cdots,X_{(t_1-1)} \leq x_{(t_1)} \leq X_{(t_1)} \leq x_{(t_1)} + dx_{(t_1)} \leq X_{(t_1+1)},\cdots \\ & \cdots,X_{(t_2-1)} \leq x_{(t_2)} \leq X_{(t_2)} \leq x_{(t_2)} + dx_{(t_2)} \leq X_{(t_2+1)},\cdots , \\ & \cdots,X_{(t_k-1)} \leq x_{(t_k)} \leq X_{(t_k)} \leq x_{(t_k)} + dx_{(t_k)} \leq X_{(t_k+1)},\cdots,X_{(n)} \big) \end{split}$$

となる。このPのかっこ内の事象は、左から順に言葉で説明すると、

「
$$n$$
 個の中の ① 個が $x_{(t_1)}$ 以下の値をとり、 ② 個が $x_{(t_1)}$ と $x_{(t_1)}$ 中 $dx_{(t_1)}$ の間の値をとり、 ③ 個が $x_{(t_1)}$ + $dx_{(t_1)}$ の間の値をとり、・・・、 ④ 個が $x_{(t_k)}$ + $dx_{(t_k)}$ 以上の値をとる〕

という事象である。

ここで、ある1つの標本が $x_{(\iota_1)}$ 以下となる確率は ⑤ であり、 $x_{(\iota_1)}$ と $x_{(\iota_1)}$ + $dx_{(\iota_1)}$ の間にある確率は $f(x_{(\iota_1)})$ $dx_{(\iota_1)}$ であるから、多項分布の求め方と同じように計算すれば、求めるべき確率密度関数は、

$$f_{X_{(t_{1})},X_{(t_{2})},\cdots,X_{(t_{k})}}(x_{(t_{1})},x_{(t_{2})},\cdots,x_{(t_{k})}) = \frac{(\boxed{\textcircled{6}})!}{(\boxed{\textcircled{1}})! \times \prod_{i=1}^{k-1} (\boxed{\textcircled{7}})! \times (\boxed{\textcircled{4}})!} \times \left\{ \boxed{\textcircled{5}} \right\} \times \left\{ \boxed{\textcircled{8}} \right\} \times \cdots \times \left\{ \boxed{\textcircled{9}} \right\}$$

となる。

(2) 標本範囲の分布

n 個の順序統計量 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ において、確率変数 $R = X_{(n)} - X_{(1)}$ を標本範囲という。 以下では、標本範囲Rの確率密度関数を考える。

まず、確率変数 $\left(X_{(1)},X_{(n)}\right)$ の同時確率密度関数 $f_{X_{(1)},X_{(n)}}\left(x_{(1)},x_{(n)}\right)$ は、(A)式において k=2 , $t_1=1$, $t_2=n$ とおけばよいから、

を得る。次に、 $r=x_{(n)}-x_{(1)}$ 、 $s=x_{(1)}$ と変数変換して求まる確率変数 $\left(R,S\right)$ の同時確率密度関数 $f_{R,S}\left(r,s\right)$ をs に関して積分すれば、標本範囲Rの確率密度関数 $f_{R}\left(r\right)$ は、

$$f_{R}(r) = \int_{-\infty}^{\infty} f_{R,S}(r,s) ds$$

$$= \boxed{\textcircled{1}} \times \int_{-\infty}^{\infty} \left\{ \boxed{\textcircled{2}} \right\}^{n-2} \times f(s) f(r+s) ds \tag{B}$$

となる。

さて、母集団分布の確率密度関数が

$$f(x) = \begin{cases} 2x & (0 \le x \le 1) \\ 0 & (その他) \end{cases}$$

で与えられているとき、

標本範囲 R の確率密度関数は (B)式に f(x)=2x $(0 \le x \le 1)$ を代入し、s の動きうる範囲に注意す れば、

を得る。

これを部分積分法によって計算すれば、

$$f_R(r) = nr^{n-2} \left\{ \boxed{17} - \frac{\boxed{18}}{n+1} + \frac{\boxed{19}}{n+1} \right\} \quad (0 \le r \le 1)$$

となる。

[①、②、③、④、⑥の選択肢]

$$(C)$$
 n

(D)
$$k$$

(E)
$$n-k$$

(F)
$$t_1 - 2$$

(G)
$$t_1 - 1$$
 (H) t_1

$$(H)$$
 t

(I)
$$t_1 + 1$$

(J)
$$t_1 + 2$$

(K)
$$t_2 - t_1 - 2$$

(I)
$$t_1+1$$
 (J) t_1+2 (K) t_2-t_1-2 (L) t_2-t_1-1

(M)
$$t_2 - t_1$$

(N)
$$t_2 - t_1 + 1$$

(O)
$$t_2 - t_1 + 2$$

(M)
$$t_2 - t_1$$
 (O) $t_2 - t_1 + 2$ (P) $n - t_k - 2$

(Q)
$$n-t_k-1$$
 (R) $n-t_k$

(R)
$$n-t_i$$

(S)
$$n-t_k+1$$
 (T) $n-t_k+2$

(T)
$$n-t_{\nu}+2$$

[⑤、⑧、⑨、⑪の選択肢]

(A)
$$\int_{-\infty}^{x_{(t_1)}} f(x) dx$$

(A)
$$\int_{-\infty}^{x_{(t_1)}} f(x) dx$$
 (B) $\int_{x_{(1)}}^{x_{(t_1)}} f(x) dx$

(c)
$$\int_{x_{(t_1-1)}}^{x_{(t_1)}} f(x) dx$$

(D)
$$\int_{-\infty}^{x_{(t_2)}} f(x) dx$$

(E)
$$\int_{x_{(n)}}^{x_{(n)}} f(x) dx$$

(E)
$$\int_{x_{(t_1)}}^{x_{(t_2)}} f(x) dx$$
 (F) $\int_{x_{(t_2-1)}}^{x_{(t_2)}} f(x) dx$

$$(G) \int_{x_{(t_{k-1})}}^{x_{(t_k)}} f(x) dx$$

$$(H) \int_{x_{(t_k)}}^{x_{(n)}} f(x) dx$$

(H)
$$\int_{x_{(t_k)}}^{x_{(n)}} f(x) dx$$
 (I) $\int_{x_{(t_k)}}^{\infty} f(x) dx$

(J)
$$\int_{-\infty}^{x_{(1)}} f(x) dx$$

(K)
$$\int_{x_{(1)}}^{x_{(n)}} f(x) dx$$

(L)
$$\int_{x_{(n)}}^{\infty} f(x) dx$$

[⑦の選択肢]

(A)
$$n-t_i-1$$

(B)
$$n-t_i$$

(C)
$$n - t_i + 1$$

(A)
$$n-t_i-1$$
 (B) $n-t_i$ (C) $n-t_i+1$ (D) $t_{i+1}-t_i-2$

(E)
$$t_{i+1} - t_i - 1$$

(F)
$$t_{i+1}-t_i$$

(G)
$$t_{i+1} - t_i + 1$$

(E)
$$t_{i+1} - t_i - 1$$
 (F) $t_{i+1} - t_i$ (G) $t_{i+1} - t_i + 1$ (H) $t_{i+1} - t_i + 2$

[⑩、⑬の選択肢]

(A)
$$\frac{n}{2}$$

(F)
$$\frac{n(n-1)}{2}$$

(G)
$$n(n-1)$$

(G)
$$n(n-1)$$
 (H) $2n(n-1)$

(I)
$$4n(n-1)$$

(I)
$$4n(n-1)$$
 (J) $8n(n-1)$

[⑫の選択肢]

(A)
$$\int_{-\infty}^{r-s} f(x) dx$$

(B)
$$\int_{-\infty}^{r+s} f(x)dx$$
 (C)
$$\int_{s-r}^{s} f(x)dx$$

(c)
$$\int_{s-r}^{s} f(x) dx$$

(D)
$$\int_{r}^{r+s} f(x)dx$$

(E)
$$\int_{r-s}^{r} f(x) dx$$

(E)
$$\int_{r-s}^{r} f(x)dx$$
 (F)
$$\int_{s}^{r+s} f(x)dx$$

(G)
$$\int_{r+s}^{\infty} f(x) dx$$

(H)
$$\int_{r-s}^{\infty} f(x) dx$$

[個、⑮の選択肢]

- (A) 0
- (B) $\frac{1}{2}$
- (C) 1
- (D) $\frac{r}{2}$

- (E) r
- (F) $1 \frac{r}{2}$
- (G) 1-r
- (H) $1+\frac{r}{2}$

- (1) $\frac{1-r}{2}$
- (J) $\frac{1+r}{2}$

[⑯の選択肢]

(A) $s(r+s)(r-s)^{2n-4}$

(B) $s(r+s)^{2n-3}$

(C) $s(r+s)r^{n-2}(2s-r)^{n-2}$

(D) $(r+s)s^{n-1}(2r+s)^{n-2}$

(E) $(r+s)s^{n-1}(2r-s)^{n-2}$

(F) $s(r+s)r^{n-2}(r+2s)^{n-2}$

(G) $s(r+s)\{1-(r+s)^2\}^{n-2}$

(H) $s(r+s)\{1-(r-s)^2\}^{n-2}$

[⑰、⑱、⑲の選択肢]

(A) r^{n+1}

- (B) $(2-r)^{n+1}$
- (C) $(1-r)^{n+1}$

(D) $(1+r)^{n+1}$

- (E) $(2+r)^{n+1}$
- (F) $(2r)^{n+1}$

(G) $(3r)^{n+1}$

(H) r^n

(I) $(1+r)^n$

(J) $(1-r)^n$

- (K) $(1-r)(2-r)^{n-1}$
- (L) $2(1-r)(2-r)^{n-1}$

- (M) $r^2(3r)^{n-1}$
- (N) $2r^2(3r)^{n-1}$
- (O) $(1+r)(2+r)^{n-1}$

(P) $2(1+r)(2+r)^{n-1}$

(付表)

I.標準正規分布表

P(x > 0.25) = 0.4013

上側 ε 点 $u(\varepsilon)$ から確率 ε を求める表

	(0) 11	7 PE 1 0 C ・	人の公女		\					
$u(\varepsilon) \rightarrow \varepsilon$	* = 0	* = 1	* = 2	* = 3	* = 4	* = 5	* = 6	* = 7	* = 8	* = 9
0.0*	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1*	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2*	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3*	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4*	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5*	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6*	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7*	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8*	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9*	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0*	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1*	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2*	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3*	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4*	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5*	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6*	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7*	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8*	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9*	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0*	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1*	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2*	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3*	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4*	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5*	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6*	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7*	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8*	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9*	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014

P(x > 1.9600) = 0.025

確率 ϵ から上側 ϵ 点 $u(\epsilon)$ を求める表

			求める表		* 4				* 0	* 0
$\varepsilon \rightarrow u(\varepsilon)$	* = 0	* = 1	* = 2	* = 3	*=4	* = 5	* = 6	* = 7	* = 8	* = 9
0.00*	∞	3.0902	2.8782	2.7478	2.6521	2.5758	2.5121	2.4573	2.4089	2.3656
0.01*	2.3263	2.2904	2.2571	2.2262	2.1973	2.1701	2.1444	2.1201	2.0969	2.0749
0.02*	2.0537	2.0335	2.0141	1.9954	1.9774	1.9600	1.9431	1.9268	1.9110	1.8957
0.03*	1.8808	1.8663	1.8522	1.8384	1.8250	1.8119	1.7991	1.7866	1.7744	1.7624
0.04*	1.7507	1.7392	1.7279	1.7169	1.7060	1.6954	1.6849	1.6747	1.6646	1.6546
0.05*	1.6449	1.6352	1.6258	1.6164	1.6072	1.5982	1.5893	1.5805	1.5718	1.5632
0.06*	1.5548	1.5464	1.5382	1.5301	1.5220	1.5141	1.5063	1.4985	1.4909	1.4833
0.07*	1.4758	1.4684	1.4611	1.4538	1.4466	1.4395	1.4325	1.4255	1.4187	1.4118
0.08*	1.4051	1.3984	1.3917	1.3852	1.3787	1.3722	1.3658	1.3595	1.3532	1.3469
0.09*	1.3408	1.3346	1.3285	1.3225	1.3165	1.3106	1.3047	1.2988	1.2930	1.2873
0.10*	1.2816	1.2759	1.2702	1.2646	1.2591	1.2536	1.2481	1.2426	1.2372	1.2319
0.11*	1.2265	1.2212	1.2160	1.2107	1.2055	1.2004	1.1952	1.1901	1.1850	1.1800
0.12*	1.1750	1.1700	1.1650	1.1601	1.1552	1.1503	1.1455	1.1407	1.1359	1.1311
0.13*	1.1264	1.1217	1.1170	1.1123	1.1077	1.1031	1.0985	1.0939	1.0893	1.0848
0.14*	1.0803	1.0758	1.0714	1.0669	1.0625	1.0581	1.0537	1.0494	1.0450	1.0407
0.15*	1.0364	1.0322	1.0279	1.0237	1.0194	1.0152	1.0110	1.0069	1.0027	0.9986
0.16*	0.9945	0.9904	0.9863	0.9822	0.9782	0.9741	0.9701	0.9661	0.9621	0.9581
0.17*	0.9542	0.9502	0.9463	0.9424	0.9385	0.9346	0.9307	0.9269	0.9230	0.9192
0.18*	0.9154	0.9116	0.9078	0.9040	0.9002	0.8965	0.8927	0.8890	0.8853	0.8816
0.19*	0.8779	0.8742	0.8705	0.8669	0.8633	0.8596	0.8560	0.8524	0.8488	0.8452
0.20*	0.8416	0.8381	0.8345	0.8310	0.8274	0.8239	0.8204	0.8169	0.8134	0.8099
0.21*	0.8064	0.8030	0.7995	0.7961	0.7926	0.7892	0.7858	0.7824	0.7790	0.7756
0.22*	0.7722	0.7688	0.7655	0.7621	0.7588	0.7554	0.7521	0.7488	0.7454	0.7421
0.23*	0.7388	0.7356	0.7323	0.7290	0.7257	0.7225	0.7192	0.7160	0.7128	0.7095
0.24*	0.7063	0.7031	0.6999	0.6967	0.6935	0.6903	0.6871	0.6840	0.6808	0.6776
0.25*	0.6745	0.6713	0.6682	0.6651	0.6620	0.6588	0.6557	0.6526	0.6495	0.6464
0.26*	0.6433	0.6403	0.6372	0.6341	0.6311	0.6280	0.6250	0.6219	0.6189	0.6158
0.27*	0.6128	0.6098	0.6068	0.6038	0.6008	0.5978	0.5948	0.5918	0.5888	0.5858
0.28*	0.5828	0.5799	0.5769	0.5740	0.5710	0.5681	0.5651	0.5622	0.5592	0.5563
0.29*	0.5534	0.5505	0.5476	0.5446	0.5417	0.5388	0.5359	0.5330	0.5302	0.5273
0.30*	0.5244	0.5215	0.5187	0.5158	0.5129	0.5101	0.5072	0.5044	0.5015	0.4987
0.31*	0.4959	0.4930	0.4902	0.4874	0.4845	0.4817	0.4789	0.4761	0.4733	0.4705
0.32*	0.4677	0.4649	0.4621	0.4593	0.4565	0.4538	0.4510	0.4482	0.4454	0.4427
0.33*	0.4399	0.4372	0.4344	0.4316	0.4289	0.4261	0.4234	0.4207	0.4179	0.4152
0.34*	0.4125	0.4097	0.4070	0.4043	0.4016	0.3989	0.3961	0.3934	0.3907	0.3880
0.35*	0.3853	0.3826	0.3799	0.3772	0.3745	0.3719	0.3692	0.3665	0.3638	0.3611
0.36*	0.3585	0.3558	0.3531	0.3505	0.3478	0.3451	0.3425	0.3398	0.3372	0.3345
0.37*	0.3319	0.3292	0.3266	0.3239	0.3213	0.3186	0.3160	0.3134	0.3107	0.3081
0.38*	0.3055	0.3029	0.3002	0.2976	0.2950	0.2924	0.2898	0.2871	0.2845	0.2819
0.39*	0.2793	0.2767	0.2741	0.2715	0.2689	0.2663	0.2637	0.2611	0.2585	0.2559
0.40*	0.2533	0.2508	0.2482	0.2456	0.2430	0.2404	0.2378	0.2353	0.2327	0.2301
0.41*	0.2275	0.2250	0.2224	0.2198	0.2173	0.2147	0.2121	0.2096	0.2070	0.2045
0.42*	0.2019	0.1993	0.1968	0.1942	0.1917	0.1891	0.1866	0.1840	0.1815	0.1789
0.43*	0.1764	0.1738	0.1713	0.1687	0.1662	0.1637	0.1611	0.1586	0.1560	0.1535
0.44*	0.1510	0.1484	0.1459	0.1434	0.1408	0.1383	0.1358	0.1332	0.1307	0.1282
0.45*	0.1257	0.1231	0.1206	0.1181	0.1156	0.1130	0.1105	0.1080	0.1055	0.1030
0.46*	0.1004	0.0979	0.0954	0.0929	0.0904	0.0878	0.0853	0.0828	0.0803	0.0778
0.47*	0.0753	0.0728	0.0702	0.0677	0.0652	0.0627	0.0602	0.0577	0.0552	0.0527
0.48*	0.0502	0.0476	0.0451	0.0426	0.0401	0.0376	0.0351	0.0326	0.0301	0.0276
0.49*	0.0251	0.0226	0.0201	0.0175	0.0150	0.0125	0.0100	0.0075	0.0050	0.0025

II.自由度 φ の χ^2 分布の上側 ε 点: $\chi^2_{\varphi}(\varepsilon)$

$\varphi \setminus \varepsilon$	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010
1	0.0002	0.0010	0.0039	0.0158	0.4549	2.7055	3.8415	5.0239	6.6349
2	0.0201	0.0506	0.1026	0.2107	1.3863	4.6052	5.9915	7.3778	9.2103
3	0.1148	0.2158	0.3518	0.5844	2.3660	6.2514	7.8147	9.3484	11.3449
4	0.2971	0.4844	0.7107	1.0636	3.3567	7.7794	9.4877	11.1433	13.2767
5	0.5543	0.8312	1.1455	1.6103	4.3515	9.2364	11.0705	12.8325	15.0863
6	0.8721	1.2373	1.6354	2.2041	5.3481	10.6446	12.5916	14.4494	16.8119
7	1.2390	1.6899	2.1673	2.8331	6.3458	12.0170	14.0671	16.0128	18.4753
8	1.6465	2.1797	2.7326	3.4895	7.3441	13.3616	15.5073	17.5345	20.0902
9	2.0879	2.7004	3.3251	4.1682	8.3428	14.6837	16.9190	19.0228	21.6660
10	2.5582	3.2470	3.9403	4.8652	9.3418	15.9872	18.3070	20.4832	23.2093
11	3.0535	3.8157	4.5748	5.5778	10.3410	17.2750	19.6751	21.9200	24.7250
12	3.5706	4.4038	5.2260	6.3038	11.3403	18.5493	21.0261	23.3367	26.2170
13	4.1069	5.0088	5.8919	7.0415	12.3398	19.8119	22.3620	24.7356	27.6882
14	4.6604	5.6287	6.5706	7.7895	13.3393	21.0641	23.6848	26.1189	29.1412
15	5.2293	6.2621	7.2609	8.5468	14.3389	22.3071	24.9958	27.4884	30.5779
16	5.8122	6.9077	7.2609	9.3122	15.3385	23.5418	26.2962	28.8454	31.9999
17	6.4078	7.5642	8.6718	10.0852	16.3382	24.7690	27.5871	30.1910	33.4087
18	7.0149	8.2307	9.3905	10.8649	17.3379	25.9894	28.8693	31.5264	34.8053
19	7.6327	8.9065	10.1170	11.6509	18.3377	27.2036	30.1435	32.8523	36.1909
20	8.2604	9.5908	10.8508	12.4426	19.3374	28.4120	31.4104	34.1696	37.5662
21	8.8972	10.2829	11.5913	13.2396	20.3372	29.6151	32.6706	35.4789	38.9322
22	9.5425	10.2823	12.3380	14.0415	21.3370	30.8133	33.9244	36.7807	40.2894
23	10.1957	11.6886	13.0905	14.8480	22.3369	32.0069	35.1725	38.0756	41.6384
24	10.1957	12.4012	13.8484	15.6587	23.3367	33.1962	36.4150	39.3641	42.9798
25	11.5240	13.1197	14.6114	16.4734	24.3366	34.3816	37.6525	40.6465	44.3141
26	12.1981	13.8439	15.3792	17.2919	25.3365	35.5632	38.8851	41.9232	45.6417
27	12.1781	14.5734	16.1514	18.1139	26.3363	36.7412	40.1133	43.1945	46.9629
28	13.5647	15.3079	16.9279	18.9392	27.3362	37.9159	41.3371	44.4608	48.2782
29	14.2565	16.0471	17.7084	19.7677	28.3361	39.0875	42.5570	45.7223	49.5879
30	14.9535	16.7908	18.4927	20.5992	29.3360	40.2560	43.7730	46.9792	50.8922
31	15.6555	17.5387	19.2806	21.4336	30.3359	41.4217	44.9853	48.2319	52.1914
32	16.3622	18.2908	20.0719	22.2706	31.3359	42.5847	46.1943	49.4804	53.4858
33	17.0735	19.0467	20.8665	23.1102	32.3358	43.7452	47.3999	50.7251	54.7755
34	17.7891	19.8063	21.6643	23.9523	33.3357	44.9032	48.6024	51.9660	56.0609
35	18.5089	20.5694	22.4650	24.7967	34.3356	46.0588	49.8018	53.2033	57.3421
36	19.2327	21.3359	23.2686	25.6433	35.3356	47.2122	50.9985	54.4373	58.6192
37	19.9602	22.1056	24.0749	26.4921	36.3355	48.3634	52.1923	55.6680	59.8925
38	20.6914	22.8785	24.8839	27.3430	37.3355	49.5126	53.3835	56.8955	61.1621
39	21.4262	23.6543	25.6954	28.1958	38.3354	50.6598	54.5722	58.1201	62.4281
40	22.1643	24.4330	26.5093	29.0505	39.3353	51.8051	55.7585	59.3417	63.6907
41	22.9056	25.2145	27.3256	29.9071	40.3353	52.9485	56.9424	60.5606	64.9501
42	23.6501	25.9987	28.1440	30.7654	41.3352	54.0902	58.1240	61.7768	66.2062
43	24.3976	26.7854	28.9647	31.6255	42.3352	55.2302	59.3035	62.9904	67.4593
44	25.1480	27.5746	29.7875	32.4871	43.3352	56.3685	60.4809	64.2015	68.7095
45	25.9013	28.3662	30.6123	33.3504	44.3351	57.5053	61.6562	65.4102	69.9568
46	26.6572	29.1601	31.4390	34.2152	45.3351	58.6405	62.8296	66.6165	71.2014
47	27.4158	29.9562	32.2676	35.0814	46.3350	59.7743	64.0011	67.8206	72.4433
48	28.1770	30.7545	33.0981	35.9491	47.3350	60.9066	65.1708	69.0226	73.6826
49	28.1770	31.5549	33.9303	36.8182	48.3350	62.0375	66.3386	70.2224	74.9195
50	29.7067				49.3349	63.1671	67.5048		
30	∠9./U0/	32.3574	34.7643	37.6886	47.3349	03.10/1	07.3048	71.4202	76.1539

II

10

12.8265

9.4270

8.0807

7.3428

6.8724

6.5446

6.3025

6.1159

5.9676

5.8467

	母の自由原 0.100	度n 、分子	の自由度	mのF分布	iの上側 ε	点: $F_n^m(\varepsilon)$;)			
$n \setminus m$	1	2	3	4	5	6	7	8	9	10
$\frac{n}{2}$	8.526	9.000	9.162	9.243	9.293	9.326	9.349	9.367	9.381	9.392
3	5.538	5.462	5.391	5.343	5.309	5.285	5.266	5.252	5.240	5.230
4	4.545	4.325	4.191	4.107	4.051	4.010	3.979	3.955	3.936	3.920
5	4.060	3.780	3.619	3.520	3.453	3.405	3.368	3.339	3.316	3.297
6	3.776	3.463	3.289	3.181	3.108	3.055	3.014	2.983	2.958	2.937
7	3.770	3.463	3.289	2.961	2.883	2.827	2.785	2.752	2.725	2.703
8	3.389	3.237	2.924	2.806	2.726	2.668	2.783	2.732	2.723	2.703
9	3.438							2.389		2.338
		3.006	2.813	2.693	2.611	2.551	2.505		2.440	1
10	3.285	2.924	2.728	2.605	2.522	2.461	2.414	2.377	2.347	2.323
	0.050									10
$n \setminus m$	10 5120	10,0000	10 1642	10 2468	5	10.2205	7	10 2710	10 2040	10 2050
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373
10	4.9646	4.1028	3.7083	3.4780	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782
$\varepsilon =$	0.025									
$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	38.5063	39.0000	39.1655	39.2484	39.2982	39.3315	39.3552	39.3730	39.3869	39.3980
3	17.4434	16.0441	15.4392	15.1010	14.8848	14.7347	14.6244	14.5399	14.4731	14.4189
4	12.2179	10.6491	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047	8.8439
5	10.0070	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811	6.6192
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234	5.4613
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232	4.7611
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572	4.2951
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260	3.9639
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790	3.7168
$\varepsilon =$	0.010									1
$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	98.5025	99.0000	99.1662	99.2494	99.2993	99.3326	99.3564	99.3742	99.3881	99.3992
3	34.1162	30.8165	29.4567	28.7099	28.2371	27.9107	27.6717	27.4892	27.3452	27.2287
4	21.1977	18.0000	16.6944	15.9770	15.5219	15.2069	14.9758	14.7989	14.6591	14.5459
5	16.2582	13.2739	12.0600	11.3919	10.9670	10.6723	10.4555	10.2893	10.1578	10.0510
6	13.7450	10.9248	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761	7.8741
7	12.2464	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188	6.6201
8	11.2586	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106	5.8143
9	10.5614	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511	5.2565
10	10.0443	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424	4.8491
	0.005									
$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	198.5013	199.0000	199.1664	199.2497	199.2996	199.3330	199.3568	199.3746	199.3885	199.3996
3	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824	43.6858
4	31.3328	26.2843	24.2591	23.1545	22.4564	21.9746	21.6217	21.3520	21.1391	20.9667
5	22.7848	18.3138	16.5298	15.5561	14.9396	14.5133	14.2004	13.9610	13.7716	13.6182
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915	10.2500
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138	8.3803
8	14.6882	11.0424	9.5965	8.8051	8.3018	7.9520	7.6941	7.4959	7.3386	7.2106
9				7.9559			6.8849			
10	13.6136	10.1067	8.7171	7.9339	7.4712 6.8724	7.1339	6 3025	6.6933	6.5411	6.4172 5.8467

IV. 自由度 φ のt分布の上側 ϵ 点: $t_{\varphi}(arepsilon)$

0.100 0.050 0.025 1 3.0777 6.313812.70622 1.8856 2.9200 4.3027 3.1824 3 1.6377 2.3534 1.5332 2.7764 2.13185 1.4759 2.0150 2.57061.9432 2.4469 6 1.4398 7 1.4149 1.8946 2.3646 8 1.3968 1.8595 2.3060 9 1.38301.83312.262210 1.3722 1.8125 2.2281 1.7959 11 1.3634 2.2010 1.3562 2.1788 12 1.7823 13 1.3502 1.7709 2.16042.1448 14 1.3450 1.7613 15 1.3406 1.7531 2.1314 16 1.3368 1.7459 2.1199 17 1.33341.7396 2.1098 18 1.3304 1.7341 2.1009 19 2.0930 1.3277 1.7291 20 1.7247 1.3253 2.0860 21 1.32321.7207 2.0796 22 1.3212 1.7171 2.0739 23 1.3195 1.7139 2.068724 1.31781.7109 2.063925 1.31631.7081 2.0595

V. 自然対数表

x	log X
1.1	0.0953
1.2	0.1823
1.3	0.2624
1.4	0.3365
1.5	0.4055
1.6	0.4700
1.7	0.5306
1.8	0.5878
1.9	0.6419
2.0	0.6931
2.5	0.9163
3.0	1.0986
3.5	1.2528
4.0	1.3863
4.5	1.5041
5.0	1.6094
5.5	1.7047
6.0	1.7918
6.5	1.8718
7.0	1.9459
7.5	2.0149
8.0	2.0794
8.5	2.1401
9.0	2.1972
9.5	2.2513
10.0	2.3026

VI. 指数関数表

х	exp(x)
-0.10	0.9048
-0.09	0.9139
-0.08	0.9231
-0.07	0.9324
-0.06	0.9418
-0.05	0.9512
-0.04	0.9608
-0.03	0.9704
-0.02	0.9802
-0.01	0.9900
0.00	1.0000
0.01	1.0101
0.02	1.0202
0.03	1.0305
0.04	1.0408
0.05	1.0513
0.06	1.0618
0.07	1.0725
0.08	1.0833
0.09	1.0942
0.10	1.1052

以上

数学 (解答例)

(1)

取り出した1個がX, Y, Zの各機械で作られたものであるという事象を記号X, Y, Zで表すこととすれば、P(X)=0.2、P(Y)=0.3、P(Z)=0.5と表される。

また、取り出したものが不良品であるという事象を記号Eで表すこととすれば、製品が不良品であるとき、それがX, Y, Zの各機械から生産されたものである確率はそれぞれ、 $P(X \mid E)$ 、 $P(Y \mid E)$ 、 $P(Z \mid E)$ と表される。

いま、Bayes (ベイズ) の定理から、

$$P(X \mid E) = \frac{P(X) \cdot P(E \mid X)}{P(E)}, \quad P(Y \mid E) = \frac{P(Y) \cdot P(E \mid Y)}{P(E)}$$

となり、仮定からP(X|E): P(Y|E) = 8:6であるから、

$$P(X) \cdot P(E \mid X) : P(Y) \cdot P(E \mid Y) = 8 : 6$$

となる。

求める確率はP(E|X)であり、仮定からP(E|Y)=0.02であることから、

$$P(E \mid X) = \frac{8 \cdot P(Y) \cdot P(E \mid Y)}{6 \cdot P(X)} = \frac{8 \cdot 0.3 \cdot 0.02}{6 \cdot 0.2} = 0.04 = 4.0\%$$

よって、解答は (H)___

X と Y の (周辺) 確率密度関数をそれぞれ $f_1(x)$, $f_2(y)$ とし、X, Y の結合確率密度関数を $f_3(x,y)$ とすると、X と Y が互いに独立であるため、

$$f_3(x,y) = f_1(x) \cdot f_2(y) = 2\lambda e^{-2\lambda x} \cdot \frac{1}{\lambda} e^{-\frac{y}{\lambda}} = 2e^{-\left(2\lambda x + \frac{y}{\lambda}\right)}$$

$$\text{Total}_0$$

ここで、 $z=\frac{x}{y}$,w=yとおくと、この変換はxy平面のx>0,y>0なる部分をzw平面のz>0,w>0なる部分に移す 1 対 1 の変換である。また、x=zw,y=wより、ヤコビアンJを求めると、

$$J = \frac{\partial(x, y)}{\partial(z, w)} = \begin{vmatrix} \frac{\partial x}{\partial z} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial z} & \frac{\partial y}{\partial w} \end{vmatrix} = \begin{vmatrix} w & z \\ 0 & 1 \end{vmatrix} = w$$

である。

よって、Z,Wの結合確率密度関数を $f_4(z,w)$ とすると、

$$f_4(z,w) = 2e^{-\left(2\lambda zw + \frac{w}{\lambda}\right)} \cdot \left|J\right| = 2we^{-\frac{w}{\lambda}(2\lambda^2z + 1)} \ (z > 0, w > 0)$$

であり、これより、Zの(周辺)確率密度関数g(z)を求めると、

$$g(z) = \int_0^\infty f_4(z, w) dw = \int_0^\infty 2w e^{-\frac{w}{\lambda}(2\lambda^2 z + 1)} dw$$

$$= \left[-\frac{2\lambda w}{2\lambda^2 z + 1} e^{-\frac{w}{\lambda}(2\lambda^2 z + 1)} \right]_0^\infty + \int_0^\infty \frac{2\lambda}{2\lambda^2 z + 1} e^{-\frac{w}{\lambda}(2\lambda^2 z + 1)} dw$$

$$= (0 - 0) + \left[-\frac{2\lambda^2}{(2\lambda^2 z + 1)^2} e^{-\frac{w}{\lambda}(2\lambda^2 z + 1)} \right]_0^\infty$$

$$= -\frac{2\lambda^2}{(2\lambda^2 z + 1)^2} (0 - 1)$$

$$= \frac{2\lambda^2}{(2\lambda^2 z + 1)^2} (z > 0)$$

よって、**解答は ① (E) ② (J)**

(3)

題意より、

$$P(X_i = 1) = P(X_i = 1, X_j = 0) + P(X_i = 1, X_j = 1) = \frac{n(N-n)}{N(N-1)} + \frac{n(n-1)}{N(N-1)} = \frac{n}{N}$$

$$E(X_i) = 0 \cdot P(X_i = 0) + 1 \cdot P(X_i = 1) = \frac{n}{N}$$

よって、

$$E(X_1 + X_2 + \dots + X_r) = E(X_1) + E(X_2) + \dots + E(X_r) = \frac{rn}{N}$$

次に、

$$E(X_i^2) = 0^2 \cdot P(X_i = 0) + 1^2 \cdot P(X_i = 1) = \frac{n}{N}$$

$$V(X_i) = E(X_i^2) - \{E(X_i)\}^2 = \frac{n(N-n)}{N^2}$$

さらに、 $i \neq j$ のとき、

$$E(X_i \cdot X_j) = 0 \cdot 0 \cdot P(X_i = 0, X_j = 0) + 0 \cdot 1 \cdot P(X_i = 0, X_j = 1)$$

$$+1 \cdot 0 \cdot P(X_i = 1, X_i = 0) + 1 \cdot 1 \cdot P(X_i = 1, X_i = 1)$$

$$=\frac{n(n-1)}{N(N-1)}$$

よって、

$$C(X_i \cdot X_j) = E(X_i \cdot X_j) - E(X_i)E(X_j) = -\frac{n(N-n)}{N^2(N-1)}$$

$$V(X_1 + X_2 + \dots + X_r) = V(X_1) + V(X_2) + \dots + V(X_r) + 2\sum_{i < j} C(X_i, X_j)$$

$$= r \cdot \frac{n(N-n)}{N^2} + 2 \cdot \frac{r(r-1)}{2} \cdot \left(-\frac{n(N-n)}{N^2(N-1)}\right)$$

$$= r \cdot \frac{n}{N} \cdot \frac{N-n}{N} \cdot \left(1 - \frac{r-1}{N-1}\right)$$
$$= \frac{rn(N-n)(N-r)}{N^2(N-1)}$$

確率変数 $X_1, X_2, \cdots, X_{100}$ は互いに独立であるから、

$$E(T) = E(X_1) + E(X_2) + \dots + E(X_{100}) = 100$$

$$V(T) = V(X_1) + V(X_2) + \dots + V(X_{100}) = 64$$

となる。

チェビシェフの不等式を用いると、

$$P(|T-100| < k \cdot \sqrt{64}) \ge 1 - \frac{1}{k^2}$$

k = 2.25 を代入して、

$$P(82 < T < 118) \ge 1 - \frac{1}{2.25^2} = 0.80246 \cdots$$

中心極限定理を用いると、

$$P(82 < T < 118) = P\left(\frac{82 - 100}{\sqrt{64}} < \frac{T - 100}{\sqrt{64}} < \frac{118 - 100}{\sqrt{64}}\right) = P\left(-2.25 < \frac{T - 100}{\sqrt{64}} < 2.25\right) = 0.9756$$

 $X = k (3 \le k \le n - 1)$ となる組み合わせ数は、

$$\underbrace{1,2,\cdots,k-1}_{},X=k,\underbrace{k+1,\cdots,n}_{}$$

k −1 枚中

n-k 枚中

2枚選ぶ

1枚選ぶ

$$\binom{k-1}{2}$$
· $\binom{n-k}{1}$ だから、 $X=k$ となる確率 $P(X=k)$ は次のとおりとなる。

$$P(X=k) = \frac{\binom{k-1}{2} \cdot \binom{n-k}{1}}{\binom{n}{4}} \quad (3 \le k \le n-1)$$

したがって、

$$E(X) = \frac{\sum_{k=3}^{n-1} k \cdot \binom{k-1}{2} \cdot (n-k)}{\binom{n}{4}}$$

ここで、
$$k \cdot \binom{k-1}{2} = 3 \cdot \binom{k}{3}$$
 であることを利用すると

$$k \cdot {k-1 \choose 2} \cdot (n-k) = 3 \cdot {k \choose 3} \cdot (n-k)$$

$$= 3 \cdot \left\{ (n+1) \cdot {k \choose 3} - (k+1) \cdot {k \choose 3} \right\}$$

$$=3\cdot\left\{(n+1)\cdot\binom{k}{3}-4\cdot\binom{k+1}{4}\right\}$$

だから、

$$E(X) = \frac{3 \cdot \left\{ (n+1) \cdot \sum_{k=3}^{n-1} {n \choose 3} - 4 \cdot \sum_{k=3}^{n-1} {k+1 \choose 4} \right\}}{\binom{n}{4}}$$

$$= \frac{3 \cdot \left\{ (n+1) \cdot {n \choose 4} - 4 \cdot {n+1 \choose 5} \right\}}{\binom{n}{4}}$$

$$= 3(n+1) - 12 \times \frac{\binom{n+1}{5}}{\binom{n}{4}}$$

$$= 3(n+1) - \frac{12(n+1)}{5} = \frac{3(n+1)}{5}$$

よって、解答は ① (M) ② (B) ③ (S) ④ (J) ⑤ (E)

 X_i ($i = 1, 2, \dots, 10$) は互いに独立であることから、

$$V(\overline{X}) = V\left(\frac{X_1 + X_2 + \dots + X_{10}}{10}\right) = \frac{1}{100} \times 10\sigma_A^2 = \frac{2}{5}$$

同様に、
$$V(\overline{Y}) = \frac{1}{144} \times 12\sigma_B^2 = \frac{2}{3}$$

さて、 \overline{X} と \overline{Y} は互いに独立であることから、

$$V(M) = V(\alpha \overline{X} + (1 - \alpha)\overline{Y}) = \alpha^{2}V(\overline{X}) + (1 - \alpha)^{2}V(\overline{Y})$$
$$= \frac{2}{5}\alpha^{2} + \frac{2}{3}(1 - \alpha)^{2}$$

V(M)を最小にする α は、V(M)を α で微分して0とおけばよいから、

$$\frac{d}{d\alpha}V(M) = \frac{d}{d\alpha}\left(\frac{2}{5}\alpha^2 + \frac{2}{3}(1-\alpha)^2\right) = 2\left(\frac{2}{5}\alpha - \frac{2}{3}(1-\alpha)\right) = 0$$

これを解いて、

$$\alpha = \frac{\frac{2}{3}}{\frac{2}{5} + \frac{2}{3}} = 0.6250$$

となる。

よって、解答は **(F)**

(7)

題意より、

標本平均
$$\bar{x} = \frac{21}{6} = 3.5$$
、

標本分散
$$s^2 = \frac{1}{6} \{ (3.2 - 3.5)^2 + (2.8 - 3.5)^2 + \dots + (4.0 - 3.5)^2 \} = 0.16$$

また、母平均は未知なので、自由度6-1=5の χ^2 表より、

$$\chi_5^2(0.975) = 0.8312$$
, $\chi_5^2(0.025) = 12.8325$

を用いて、トラック1台の資材の重量の分散 σ'^2 の信頼区間は、

$$\frac{6 \times 0.16}{12.8325} \le {\sigma'}^2 \le \frac{6 \times 0.16}{0.8312}$$
 となる。

ゆえに、トラック30台で運び出された資材の総重量は、分散の加法性により、

$$2.2443 \le \sigma^2 = 30\sigma'^2 \le 34.6487$$

よって、<u>解答は ① (C) ② (J)</u>

帰無仮説 H_0 : 平均 μ = 1,000 (時間)、対立仮説 H_1 : 平均 μ = 1,200 (時間)として仮説 検定を行う。

まず、標本数nの標本変量は、それぞれ独立で平均 μ 、分散 σ^2 の正規分布に従うとする

と、標本平均
$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
 は平均 μ 、分散 $\frac{\sigma^2}{n}$ の正規分布に従う。

よって、
$$\overline{X}$$
を標準化し $Z=\frac{\overline{X}-\mu}{\sqrt{\frac{\sigma^2}{n}}}$ は標準正規分布に従う。

題意より、有意水準(第1種の誤りの起こる確率)が1% であるため、

$$P(\overline{X} \ge k | \mu = 1,000) = P\left(Z \ge \frac{k - 1,000}{\sqrt{\frac{204^2}{25}}}\right) = 0.01$$

従って、数表より
$$\frac{k-1,000}{\sqrt{\frac{204^2}{25}}} = 2.3263$$
 ∴ $k = 1094.91304$

よって、検出力は、

$$1 - P(\overline{X} \le k | \mu = 1,200) = 1 - P\left(Z \le \frac{k - 1,200}{\sqrt{\frac{204^2}{25}}}\right) = 1 - P(Z \le -2.5757) = 1 - P(Z \ge 2.5757)$$

数表より、 $P(Z \ge 2.5757) \stackrel{.}{\Rightarrow} 0.0050$ より、検出力は0.9950である。

(9)

与えられた表に対して、縦軸・横軸の添え字i,jを、それぞれ次のように定め、各欄の人数 を f_{ii} で表す。

$$i = \begin{cases} 1 : 合格 \\ 2 : 不合格 \end{cases}$$
 $j = \begin{cases} 1 : 100\% \\ 2 : 50%以上~100%未満 \\ 3 : 50%未満 \end{cases}$

また、講義を受講した学生数を N とし、帰無仮説 H_0 が正しいとした場合の各欄の期待度数 $\frac{f_i.f_{.j}}{N}$ (以下、これを a_{ij} とする)を計算する。

これらから、下表を得る。

i	j	f_{ij}	a_{ij}	$f_{ij} - a_{ij}$	$(f_{ij}-a_{ij})^2$	$\frac{(f_{ij}-a_{ij})^2}{a_{ij}}$
1	1	15	13.65	1.35	1.8225	0.1335
1	2	32	27.95	4.05	16.4025	0.5869
1	3	18	23.4	-5.4	29.16	1.2462
2	1	6	7.35	-1.35	1.8225	0.2480
2	2	11	15.05	-4.05	16.4025	1.0899
2	3	18	12.6	5.4	29.16	2.3143
	計	100	100			5.6186

これより、統計量 $\chi^2 = 5.6186$ が得られる。これと分布の数値の比較を行うと、自由度は2 (= (2-1) × (3-1)) であるので、

有意水準1% の場合、 $\chi_2^{\ 2}(0.01)=9.2103$ >5.6186 \Rightarrow 採択

有意水準5%の場合、 $\chi_2^2(0.05)=5.9915$ >5.6186 \Rightarrow 採択

有意水準10% の場合、 $\chi_2^2(0.10) = 4.6052$ < 5.6186 \Rightarrow 棄却

よって、解答は ① (A) ② (A) ③ (B)

ダミー変数 d_i を次のように定義する。

$$d_i = \begin{cases} 1 & (i = \hat{\pi} \%) \\ 0 & (i = (\# \%)) \end{cases}$$

このダミー変数を用い、回帰式 $y=\alpha_1+\beta_1x+\beta_2d$ としてパラメータ α_1 、 β_1 、 β_2 を推定する。

$$X = \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1.8 & 0 \\ 1 & 2.7 & 1 \\ 1 & 4.0 & 0 \end{pmatrix} \quad Y = \begin{pmatrix} 4.6 \\ 13.6 \\ 10.9 \\ 20.5 \end{pmatrix}$$
 とすると

 $lpha_{\scriptscriptstyle 1}$ 、 $eta_{\scriptscriptstyle 1}$ 、 $eta_{\scriptscriptstyle 2}$ の推定値 $\hat{lpha}_{\scriptscriptstyle 1}$ 、 $\hat{eta}_{\scriptscriptstyle 1}$ 、 $\hat{eta}_{\scriptscriptstyle 2}$ は

$$\begin{pmatrix} \hat{\alpha}_1 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{pmatrix} = \begin{pmatrix} X^T X \end{pmatrix}^{-1} X^T Y = \begin{pmatrix} \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1.8 & 0 \\ 1 & 2.7 & 1 \\ 1 & 4.0 & 0 \end{pmatrix}^T \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1.8 & 0 \\ 1 & 2.7 & 1 \\ 1 & 4.0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1.8 & 0 \\ 1 & 2.7 & 1 \\ 1 & 4.0 & 0 \end{pmatrix}^T \begin{pmatrix} 4.6 \\ 13.6 \\ 10.9 \\ 20.5 \end{pmatrix}$$

$$= \begin{pmatrix} 4.00 & 9.40 & 2.00 \\ 9.40 & 27.34 & 3.60 \\ 2.00 & 3.60 & 2.00 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0.9 & 1 \\ 1 & 1.8 & 0 \\ 1 & 2.7 & 1 \\ 1 & 4.0 & 0 \end{pmatrix}^{T} \begin{pmatrix} 4.6 \\ 13.6 \\ 10.9 \\ 20.5 \end{pmatrix}$$

$$= \frac{1}{16.16} \begin{pmatrix} 41.72 & -11.60 & -20.84 \\ -11.60 & 4.00 & 4.40 \\ -20.84 & 4.40 & 21.00 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0.9 & 1.8 & 2.7 & 4.0 \\ 1 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 4.6 \\ 13.6 \\ 10.9 \\ 20.5 \end{pmatrix} = \begin{pmatrix} 7.5317 \\ 3.2822 \\ -5.6896 \end{pmatrix}$$

すなわち、
$$\alpha = \begin{cases} \hat{\alpha}_1 + \hat{\beta}_2 = 1.8421 & (t = 奇数) \\ \hat{\alpha}_1 & = 7.5317 & (t = 偶数) \end{cases}$$
 $\beta = \hat{\beta}_1 = 3.2822$

となる。

(11)

$$MA(2)$$
モデル $Y_t = \theta_0 + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \theta_2 \varepsilon_{t-2}$ $(E(\varepsilon_t) = 0, V(\varepsilon_t) = \sigma^2)$ において、分散、

時差1、2の自己共分散をそれぞれ γ_0 、 γ_1 、 γ_2 とすると

$$\gamma_0 = \sigma^2 (1 + \theta_1^2 + \theta_2^2)$$
$$\gamma_1 = \sigma^2 (-\theta_1 + \theta_1 \theta_2)$$
$$\gamma_2 = \sigma^2 (-\theta_2)$$

である。

問題文より、 $\sigma^2 = 0.8$ 、 $\theta_0 = 2.0$ 、 $\theta_1 = 0.8$ 、 $\theta_2 = 0.2$ であるので、

$$\gamma_0 = 0.8(1 + 0.8^2 + 0.2^2) = 1.344$$

$$\gamma_1 = 0.8(-0.8 + 0.8 \cdot 0.2) = -0.512$$

$$\gamma_2 = 0.8(-0.2) = -0.16$$

より、

$$\rho_1 = \frac{\gamma_1}{\gamma_0} = \frac{-0.512}{1.344} = -0.381 \cdots$$

$$\rho_2 = \frac{\gamma_2}{\gamma_0} = \frac{-0.16}{1.344} = -0.119 \cdots$$

よって、<u>解答は ① (C) ② (E)</u>

(12)

[0,1]上の一様分布に従う10個の乱数 x_1 、 x_2 、 \cdots 、 x_{10} について、 x_{2k-1} はYが指数分布に 従うか一様分布に従うかを表し、 x_{2k} はYの従う分布関数Fに対して $F(y)=x_{2k}$ となるよ うなYの値yを求めるために用いられる。(k=1,2,3,4,5)

F(y) が平均 0.5 の指数分布に従うとき、 $x_{2k} = 1 - e^{-\frac{y}{0.5}}$ より、 $y = -0.5 \log(1 - x_{2k})$ 、

$$F(y)$$
が $[-3,3]$ 上の一様分布に従うとき、 $x_{2k} = \frac{y+3}{6}$ より、 $y = 6x_{2k} - 3$ となる。

問題文の手順に従い、 y の値を5つ得ることができる。これを表にすると、

k	x_{2k-1}	x_{2k}	Yの従う分布	Y の値 y
1	0.27	0.55	指数分布	0.39925
2	0.56	0.64	一様分布	0.84
3	0.76	0.56	一様分布	0.36
4	0.10	0.75	指数分布	0.69315
5	0.84	0.48	一様分布	-0.12

なお、k=1のとき、

$$y = -0.5\log(1 - 0.55)$$
$$= -0.5\log 0.45$$

$$=-0.5(\log 4.5 - \log 10)$$

(自然対数表より、log 4.5 = 1.5041、log 10 = 2.3026)

$$=-0.5(1.5041-2.3026)$$

=0.39925

 $k = 4 \mathcal{O} \mathcal{E}$

$$y = -0.5\log(1 - 0.75)$$

 $=-0.5\log 0.25$

$$=-0.5(\log 2.5 - \log 10)$$

(自然対数表より、 $\log 2.5 = 0.9163$ 、 $\log 10 = 2.3026$)

$$=-0.5(0.9163-2.3026)$$

= 0.69315

よって、
$$y$$
の平均は、 $\frac{1}{5}$ $(0.39925 + 0.84 + 0.36 + 0.69315 - 0.12) = 0.43448$

よって、解答は (D)

問題2

(1)

【ルール1】:

1つのサイコロを振る試行を繰り返し、はじめて6の目が出た時点で試行を終了する。

X=i $(i\geq 1)$ となる確率 P(X=i) は、i 回目の試行ではじめて6 の目が出る確率である (1回目からi-1回目の試行ではそれ以外の目が出続ける)。1回の試行で6 の目が出る確率は $\frac{1}{6}$ 、それ以外の目が出る確率は $\frac{5}{6}$ であるから、P(X=i) は、

$$P(X=i) = \underbrace{\frac{5}{6} \times \dots \times \frac{5}{6}}_{i-1} \times \underbrace{\frac{1}{6}}_{i-1} = \underbrace{\frac{1}{6}}_{i-1} \times \underbrace{\left(\frac{5}{6}\right)^{i-1}}_{i-1} \qquad (i=1,2,\dots)$$

となる。

したがって、サイコロを振る回数の期待値E(X)は、

$$E(X) = \sum_{i=1}^{\infty} i \times P(X=i) = \frac{1}{6} \sum_{i=1}^{\infty} i \times \left(\frac{5}{6}\right)^{i-1}$$

と表せる。

ここで、 $\left|p\right|<1$ の場合における p の恒等式 $\frac{1}{1-p}=\sum_{k=0}^{\infty}p^{k}$ の両辺を微分した

$$\frac{1}{(1-p)^2} = \sum_{k=1}^{\infty} k \times p^{k-1} \ \text{に} \ p = \frac{5}{6}$$
を代入して用いると、

$$E(X) = \frac{1}{6} \sum_{i=1}^{\infty} i \times \left(\frac{5}{6}\right)^{i-1} = \frac{1}{6} \times \frac{1}{\left(1 - \frac{5}{6}\right)^{2}} = 6$$

となる。

よって、解答は ① (P) ② (U) ③ (F)

【ルール2】:

1つのサイコロを振る試行を繰り返し、はじめて6の目が出た時点で試行を終了する。ただし、試行はn+1回以上行わない。すなわち、サイコロをn回振って6の目が一度も出なかった場合でも、それ以上サイコロは振らないこととする。(試行はn回で終了する)。

I) n=1の場合

1回目にどの目が出ても試行は1回で終了するので、サイコロを振る回数の期待値 $E(Y_1)$ は、明らかに $E(Y_1)$ =1となる。

II) n≥2の場合

サイコロを振る回数の期待値 $E(Y_n)$ を、1回目に6の目が出た場合と、1回目にその他の目が出た場合に分けて考える。

【ケース1】1回目に6の目が出た場合

1回目に6の目が出る確率は $\frac{1}{6}$ であり、試行は1回で終了する。

【ケース2】1回目にその他の目が出た場合

1回目にその他の目が出る確率は $\frac{5}{6}$ である。

この場合、2回目以降の試行において、はじめて6の目が出た時点で試行が終了することになる(ただし、試行はn回目で終了する)。つまり、2回目の試行からサイコロを振る回数の期待値は $E(Y_{n-1})$ と表わせる。

したがって、すでに1回目の試行を実施していることに注意すれば、試行回数の期待値は、 $1+E(Y_{n-1})$ と表わせる。

したがって、サイコロを振る回数の期待値 $E(Y_n)$ は、【ケース1】と【ケース2】より、漸化式を用いて、

$$E(Y_n) = \frac{1}{6} \times 1 + \frac{5}{6} \times \{1 + E(Y_{n-1})\}$$

と表わせる。

この式を整理すると、

$$E(Y_n) = 1 + \frac{5}{6} \times E(Y_{n-1})$$
 $\cdot \cdot \cdot (\ddagger 1)$

となる。

次に、(式1) を $E(Y_n)$ + $\alpha = \frac{5}{6} \times \{E(Y_{n-1}) + \alpha\}$ に変形することを考える。この式は、

$$E(Y_n) = \left(-\frac{\alpha}{6}\right) + \frac{5}{6} \times E(Y_{n-1})$$

と整理できるので、(式1) を満たす条件は、 $-\frac{\alpha}{6}=1$ となる。これを解くと $\alpha=-6$ であるから、(式1)は、

$$E(Y_n) - 6 = \frac{5}{6} \times \{E(Y_{n-1}) - 6\}$$

と変形できる。

したがって、

$$E(Y_n) - 6 = \frac{5}{6} \times \{E(Y_{n-1}) - 6\} = \left(\frac{5}{6}\right)^2 \times \{E(Y_{n-2}) - 6\} = \dots = \left(\frac{5}{6}\right)^{n-1} \times \{E(Y_1) - 6\}$$
$$= \left(\frac{5}{6}\right)^{n-1} \times (1 - 6) = -5 \times \left(\frac{5}{6}\right)^{n-1}$$

であり、これを $E(Y_n)$ について解けば、

$$E(Y_n) = 6 - 5 \times \left(\frac{5}{6}\right)^{n-1} \qquad \cdot \cdot \cdot (\not \exists 2)$$

となる。

【ルール3】:

1つのサイコロを振る試行を繰り返し、はじめて5の目と6の目が出そろった時点(5の目が先に出た場合は、そこからさらに6の目がはじめて出た時点、6の目が先に出た場合は、そこからさらに5の目がはじめて出た時点)で試行を終了する。ただし、試行はn+1回以上行わない。すなわち、サイコロをn回振って5の目と6の目が出そろわなかった場合でも、それ以上サイコロは振らないこととする。(試行はn回で終了する)。

例えばn=8の場合、

サイコロの目が順に、1,5,5,2,6であれば、サイコロを振る回数は5回となる。 (5回目で、はじめて5の目と6の目が出そろったため、5回で終了する。) サイコロの目が順に、1,5,5,2,4,5,3,6であれば、サイコロを振る回数は8回となる。 (8回目で、はじめて5の目と6の目が出そろったため、8回で終了する。) サイコロの目が順に、1,5,5,2,4,5,3,2であれば、サイコロを振る回数は8回となる。 (8回振って5の目と6の目が出そろわなかった場合であり、8回で終了する。)

I) n=1の場合

1回目にどの目が出ても試行は1回で終了するので、サイコロを振る回数の期待値 $E(Z_1)$ は、明らかに $E(Z_1)$ =1となる。

II) n≥2の場合

サイコロを振る回数の期待値 $E(Z_n)$ を、1回目に5または6の目が出た場合と、1回目にその他の目が出た場合に分けて考える。

【ケース1】1回目に5の目が出た場合

1回目に5の目が出る確率は $\frac{1}{6}$ である。

この場合、2回目以降の試行において、はじめて6の目が出た時点で試行が終了することになる(ただし、試行はn回目で終了する)。つまり、2回目以降は【 ν - ν 2】のもとでサイコロを振る試行を繰り返すことになるので、2回目の試行からサイコロを振る回数の期待値は $E(Y_{n-1})$ と表わせる。

したがって、すでに1回目の試行を実施していることに注意すれば、試行回数の期待値は、 $1+E(Y_{n-1})$ と表わせる。

【ケース2】1回目に6の目が出た場合

1回目に6の目が出る確率は $\frac{1}{6}$ である。

この場合、【ケース 1 】 同様に考えれば、試行回数の期待値は $1+E(Y_{n-1})$ と表わせる。

【ケース3】1回目にその他の目が出た場合

1回目に5、6の目以外が出る確率は $\frac{4}{6}$ である。

この場合、2回目以降の試行において、はじめて5の目と6の目が出そろった時点で試行が終了することになる(ただし、試行はn回目で終了する)。つまり、2回目の試行からサイコロを振る回数の期待値は $E(Z_{n-1})$ と表わせる。

したがって、すでに1回目の試行を実施していることに注意すれば、試行回数の期待値は $1+E(Z_{n-1})$ と表わせる。

したがって、サイコロを振る回数の期待値 $E(Z_n)$ は、【ケース1】から【ケース3】より、漸化式を用いて、

$$E(Z_n) = \frac{1}{6} \times \{1 + E(Y_{n-1})\} + \frac{1}{6} \times \{1 + E(Y_{n-1})\} + \frac{4}{6} \times \{1 + E(Z_{n-1})\}$$

と表わせる。

この式を整理すると、

$$E(Z_n) = 1 + \frac{1}{3} \times E(Y_{n-1}) + \frac{2}{3} \times E(Z_{n-1}) \qquad \cdot \cdot \cdot (\pm 3)$$

次に、(式3) を $E(Z_n)$ + $\beta \times E(Y_n)$ + $\gamma = \frac{2}{3} \times \{E(Z_{n-1}) + \beta \times E(Y_{n-1}) + \gamma\}$ に変形することを考える。(式1) を $E(Z_n)$ + $\beta \times E(Y_n)$ + $\gamma = \frac{2}{3} \times \{E(Z_{n-1}) + \beta \times E(Y_{n-1}) + \gamma\}$ に代入すると、

$$E(Z_n) + \beta \times \left\{ 1 + \frac{5}{6} \times E(Y_{n-1}) \right\} + \gamma = \frac{2}{3} \times \left\{ E(Z_{n-1}) + \beta \times E(Y_{n-1}) + \gamma \right\}$$

$$E(Z_n) = \left(-\beta - \frac{\gamma}{3}\right) + \left(-\frac{\beta}{6}\right) \times E(Y_{n-1}) + \frac{2}{3} \times E(Z_{n-1})$$

と整理できる。

この式が (式3) を満たす条件は、 β と γ が連立方程式

$$\begin{cases} -\beta - \frac{\gamma}{3} = 1 \\ -\frac{\beta}{6} = \frac{1}{3} \end{cases}$$

の解となるときである。この連立方程式を解くと、 $\beta=-2$ 、 $\gamma=3$ であるから、(式3) は、

$$E(Z_n) - 2 \times E(Y_n) + 3 = \frac{2}{3} \times \{E(Z_{n-1}) - 2 \times E(Y_{n-1}) + 3\}$$

と変形できる。

したがって、

$$E(Z_n) - 2 \times E(Y_n) + 3 = \frac{2}{3} \times \{E(Z_{n-1}) - 2 \times E(Y_{n-1}) + 3\} = \left(\frac{2}{3}\right)^2 \times \{E(Z_{n-2}) - 2 \times E(Y_{n-2}) + 3\}$$

$$= \dots = \left(\frac{2}{3}\right)^{n-1} \times \{E(Z_1) - 2 \times E(Y_1) + 3\} = \left(\frac{2}{3}\right)^{n-1} \times (1 - 2 + 3)$$

$$= 2 \times \left(\frac{2}{3}\right)^{n-1}$$

であり、さらに、(式2)を代入すると、

$$E(Z_n) - 2 \times \left\{ 6 - 5 \times \left(\frac{5}{6}\right)^{n-1} \right\} + 3 = 2 \times \left(\frac{2}{3}\right)^{n-1}$$

と表わせるので、これを $E(Z_n)$ について解けば、

$$E(Z_n) = 9 - 10 \times \left(\frac{5}{6}\right)^{n-1} + 2 \times \left(\frac{2}{3}\right)^{n-1}$$

となる。

問題3.

(1) 順序統計量

確率密度関数が f(x) $(-\infty < x < \infty)$ なる分布をもつ母集団から、大きさn の標本値 (x_1,x_2,\cdots,x_n) を取り出し、小さいものから順に並べて $x_{(1)},x_{(2)},\cdots,x_{(n)}$ としたときの確率変数 $X_{(t)}$ をt 番目の順序統計量という。

以下では、k個(k < n)の順序統計量 $X_{(t_1)}, X_{(t_2)}, \cdots, X_{(t_k)}$ $(t_1 < t_2 < \cdots < t_k)$ の同時確率密度関数 $f_{X_{(t_1)}, X_{(t_2)}, \cdots, X_{(t_k)}}$ $(x_{(t_1)}, x_{(t_2)}, \cdots, x_{(t_k)})$ を考える。

いま、下図を参考に

$$x_{(t_1)} \leq X_{(t_1)} \leq x_{(t_1)} + dx_{(t_1)}, \ x_{(t_2)} \leq X_{(t_2)} \leq x_{(t_2)} + dx_{(t_2)}, \cdots, \ x_{(t_k)} \leq X_{(t_k)} \leq x_{(t_k)} + dx_{(t_k)}$$
 の同時確率 P を求めると、

$$X_{(1)}, \dots, X_{(t_1-1)} \longrightarrow X_{(t_1)}, \dots, X_{(t_2-1)} \longrightarrow X_{(t_2)} \longrightarrow X_{(t_2)} \longrightarrow X_{(t_2)} \longrightarrow X_{(t_k)} \longrightarrow X_{(t_k)}$$

$$\begin{split} P\big(X_{(1)},\cdots,X_{(t_1-1)} \leq x_{(t_1)} \leq X_{(t_1)} \leq x_{(t_1)} + dx_{(t_1)} \leq X_{(t_1+1)},\cdots \\ & \cdots,X_{(t_2-1)} \leq x_{(t_2)} \leq X_{(t_2)} \leq x_{(t_2)} + dx_{(t_2)} \leq X_{(t_2+1)}\cdots, \\ & \cdots,X_{(t_k-1)} \leq x_{(t_k)} \leq X_{(t_k)} \leq x_{(t_k)} + dx_{(t_k)} \leq X_{(t_k+1)},\cdots,X_{(n)} \big) \end{split}$$

となる。このPのかっこ内の事象は、左から順に言葉で説明すると、

「n 個の中の t_1-1 個が $x_{(t_1)}$ 以下の値をとり、1 個が $x_{(t_1)}$ と $x_{(t_1)}+dx_{(t_1)}$ の間の値をとり、

 t_2-t_1-1 個が $x_{(t_1)}+dx_{(t_1)}$ と $x_{(t_2)}$ の間の値をとり、・・・、 $n-t_k$ 個が $x_{(t_k)}+dx_{(t_k)}$ 以上の値をとる」

という事象である。

ここで、ある1つの標本が $x_{(t_1)}$ 以下となる確率は $\int_{-\infty}^{x_{(t_1)}} f(x) dx$ であり、 $x_{(t_1)}$ と $x_{(t_1)}$ + $dx_{(t_1)}$ の間にある確率は $f(x_{(t_1)})$ $dx_{(t_1)}$ であるから、多項分布の求め方と同じように計算すれば、求めるべき確率密度関数は、

$$f_{X_{(t_{1})},X_{(t_{2})},\cdots,X_{(t_{k})}}(x_{(t_{1})},x_{(t_{2})},\cdots,x_{(t_{k})})$$

$$=\frac{n!}{(t_{1}-1)! \times \prod_{i=1}^{k-1} (t_{i+1}-t_{i}-1)! \times (n-t_{k})!}$$

$$\times \left\{ \int_{-\infty}^{x_{(t_{1})}} f(x) dx \right\}^{t_{1}-1} \times \left\{ \int_{x_{(t_{1})}}^{x_{(t_{2})}} f(x) dx \right\}^{t_{2}-t_{1}-1} \times \cdots \times \left\{ \int_{x_{(t_{k})}}^{\infty} f(x) dx \right\}^{n-t_{k}}$$

$$\times f(x_{(t_{1})}) f(x_{(t_{1})}) \cdots f(x_{(t_{k})}) \qquad (A)$$

となる。

(2)標本範囲の分布

n 個の順序統計量 $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ において、確率変数 $R = X_{(n)} - X_{(1)}$ を標本範囲という。

以下では、標本範囲 R の確率密度関数を考える。

まず、確率変数 $\left(X_{(1)},X_{(n)}\right)$ の同時確率密度関数 $f_{X_{(1)},X_{(n)}}\left(x_{(1)},x_{(n)}\right)$ は、(A)式において k=2, $t_1=1$, $t_2=n$ とおけばよいから、

$$f_{X_{(1)},X_{(n)}}(x_{(1)},x_{(n)}) = \frac{n!}{0! (n-2)! 0!} \left\{ \int_{-\infty}^{x_{(1)}} f(x) dx \right\}^{0} \left\{ \int_{x_{(1)}}^{x_{(n)}} f(x) dx \right\}^{n-2} \left\{ \int_{x_{(n)}}^{\infty} f(x) dx \right\}^{0} f(x_{(1)}) f(x_{(n)})$$

$$= n(n-1) \left\{ \int_{x_{(1)}}^{x_{(n)}} f(x) dx \right\}^{n-2} f(x_{(1)}) f(x_{(n)})$$

を得る。次に、 $r=x_{(n)}-x_{(1)}$ 、 $s=x_{(1)}$ と変数変換すれば、確率変数(R,S)の同時確率密度関数は、

$$f_{R,S}(r,s) = n(n-1) \cdot \left\{ \int_{s}^{r+s} f(x) dx \right\}^{n-2} f(s) f(r+s) \cdot \left| \frac{\partial (x_{(1)}, x_{(n)})}{\partial (r,s)} \right|$$

となるが、

$$\frac{\partial(x_{(1)}, x_{(n)})}{\partial(r, s)} = \begin{vmatrix} \frac{\partial x_{(1)}}{\partial r} & \frac{\partial x_{(n)}}{\partial r} \\ \frac{\partial x_{(1)}}{\partial s} & \frac{\partial x_{(n)}}{\partial s} \end{vmatrix} = -1$$

と計算されるので、これを上式に代入し、s に関して積分すれば標本範囲 R の確率密度関数は、

$$f_{R}(r) = \int_{-\infty}^{\infty} f_{R,S}(r,s)ds$$

$$= \int_{-\infty}^{\infty} n(n-1) \cdot \left\{ \int_{s}^{r+s} f(x)dx \right\}^{n-2} f(s)f(r+s)ds \tag{B}$$

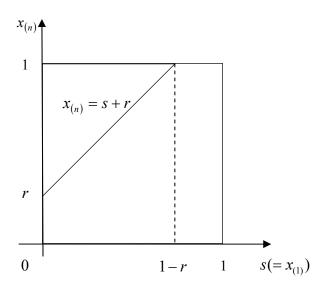
となる。

さて、母集団分布の確率密度関数が

$$f(x) = \begin{cases} 2x & (0 \le x \le 1) \\ 0 & (その他) \end{cases}$$

で与えられているとき、

標本範囲 R の確率密度関数は (B)式に f(x)=2x $(0 \le x \le 1)$ を代入し、また $x_{(n)} \le 1$ であることから s の動きうる範囲が下図のとおり [0,1-r] であることに注意すれば、



$$f_R(r) = n(n-1) \cdot \int_0^{1-r} \left\{ \int_s^{r+s} 2x dx \right\}^{n-2} 2s \cdot 2(r+s) ds$$

= $4n(n-1) \cdot \int_0^{1-r} s(r+s) r^{n-2} (r+2s)^{n-2} ds$

を得る。

これを部分積分法によって計算すれば、

$$f_{R}(r) = n(n-1)r^{n-2} \left\{ \frac{2(1-r)(2-r)^{n-1}}{(n-1)} - \frac{(2-r)^{n+1}}{(n^{2}-1)} + \frac{r^{n+1}}{(n^{2}-1)} \right\}$$

$$= nr^{n-2} \left\{ 2(1-r)(2-r)^{n-1} - \frac{(2-r)^{n+1}}{n+1} + \frac{r^{n+1}}{n+1} \right\} \quad (0 \le r \le 1)$$

となる。

問題1.

(1)		(H)	5点	(6)		(F)	5点
(2)	1	(E)	完答で5点	(7)	1	(C)	完答で5点
	2	(J)			2	(J)	
(3)	1	(F)	完答で	(8)		(G)	5点
	2	(A)	1. 5点	(9)	1	(A)	完答で5点
	3	(J)	完答で		2	(A)	
	4	(C)	3. 5点		3	(B)	
(4)	1	(C)	2. 5点	(10)	1	(F)	1. 5点
	2	(I)	2. 5点		2	(B)	1. 5点
(5)	1	(M)	完答で		3	(B)	2点
	2	(B)	1. 5点	(11)	1	(C)	2. 5点
	3	(S)			2	(E)	2. 5点
	4	(J)	完答で	(12)		(D)	5点
	(5)	(E)	3. 5点		•		

問題2.

(1)	1	(P)	完答で2点	(3)	10	(A)	1点
	2	(U)			11)	(A)	完答で4点
	3	(F)	2点		12	(R)	
(2)	4	(A)	1点		13	(T)	
	5	(A)	完答で2点		14)	(I)	完答で5点
	6	(U)			15	(J)	
	7	(F)	完答で3点		16)	(O)	
	8	(E)			17)	(B)	
	9	(O)			18	(L)	

問題3.

(1)	1	(G)	1点	(2)	10	(G)	完答で3点
	2	(A)	1点		11)	(K)	
	3	(L)	1点		12	(F)	
	4	(R)	1 点		13	(I)	完答で3点
	5	(A)	1点		14)	(G)	
	6	(C)	完答で4点		15	(A)	
	7	(E)			16	(F)	
	8	(E)			17	(L)	完答で5点
	9	(I)			18	(B)	
					19	(A)	