生 保 数 理 (問題)

- 問題1.次の(1) \sim (10)の各間について、最も適切なものをそれぞれの選択肢の中から1つ選 (60点) び、解答用紙の所定の欄にマークしなさい。
- (1)ゴムパーツの法則に従う2種類の生命表があり、第1の生命表の死力は $\mu_x^{(1)}=1.5Bc^x$ 、第2の 生命表の死力は $\mu_x^{(2)} = Bc^x$ ($\mu_x^{(1)}$ および $\mu_x^{(2)}$ において、B、c は定数、 $c \neq 1$)が成り立つものと する。ある定数a(a>0)に関し、第1の生命表における $p_r^{(1)}$ が第2の生命表における $p_r^{(2)}$ に等 しくなるとき、定数aを表す式は次のうちどれか。
 - (A) $\frac{2}{3}\log c$ (B) $\log \frac{3}{2}c$ (C) $\frac{\log c}{\log \frac{2}{3}}$ (D) $\frac{\log 3}{\log 2c}$ (E) $\frac{\log \frac{2}{3}}{\log c}$
 - (A) $\frac{1}{3}\log c$ (B) $\log \frac{\pi}{2}c$ (C) $\log \frac{\pi}{3}$ $\log 2c$ $\log 2c$ (F) $\frac{3}{2}\log c$ (G) $\log \frac{2}{3}c$ (H) $\frac{\log c}{\log \frac{3}{2}}$ (1) $\frac{\log 3c}{\log 2}$ (J) $\frac{\log \frac{3}{2}}{\log c}$
- (2) 定常状態の団体がある。この団体の構成員はすべて 20 歳で加入し、以後ある生命表に従って生 存、もしくは死亡して、60歳になればすべて退会するものとする。この団体の人数が10,000人、 毎年の死亡者数が40人、死亡時の平均年齢が50歳であるとき、毎年の退会者数に最も近いもの は次のうちどれか。
 - (C) 220 (E) **(B)** 210 (D) 230 240 (A) 200 (J) (F) 250 (G) 260 (H) 270 (1)280 290
- (3) 死亡解約脱退残存表において、x 歳の中央死亡率 $m_x^d = 0.004$ 、中央解約率 $m_x^\omega = 0.08$ であると き、x 歳から 1 年間死亡も解約もなく存続する確率 p^* に最も近いものは次のうちどれか。
 - (C) 0.910 (D) (E) 0.920 0.915 (A) 0.900 **(B)** 0.905 **(F)** 0.925 (G) 0.930 (H) 0.935 (1)0.940 (1) 0.945
- (4) x 歳加入、保険料年払全期払込、保険金年度末支払、保険金額 1、保険期間 n 年の養老保険に おいて、 $\ddot{a}_{x:n}$ = 17.0059、 $\ddot{a}_{x+t:n-t}$ = 9.1705、 q_{x+t} = 0.00365とするとき、第t+1年度の危険保 険料…P'の値に最も近いものは次のうちどれか。
 - (C) 0.00136 (D) 0.00146 (E) 0.00156 (A) 0.00116 **(B)** 0.00126 (1)(J) (G) 0.00176 (H) 0.00186 0.00196 0.00206 (F) 0.00166

生保数理……2

(5) x 歳加入、保険料年払全期払込、保険金年度末支払、保険金額 1、保険期間n年の養老保険において、予定死亡率をすべての年齢について q_x から q'_x に変更して、平準純保険料式責任準備金を比較すると、どの $t(0 \le t \le n-2)$ に対しても、

$$_{t}V_{x:\overline{n}}'=_{t}V_{x:\overline{n}}$$

が成り立つときには、予定死亡率が

$$q'_{x+t} = q_{x+t} + \frac{k}{\ddot{a}_{x+t+1:n-t-1}} \quad (0 \le t \le n-3)$$

の関係にある。

このとき、k を表す式は次のうちどれか。

ここで、 $\ddot{a}'_{x,n} = c \times \ddot{a}_{x,n} \quad (0 < c, c \neq 1)$ とする。

なお、予定利率をiとし、予定死亡率を変更した記号は、 $\lceil ' \rfloor$ をつけて表現されるものとする。

(A)
$$\frac{1-c}{c} \cdot i$$
 (B) $\frac{1-c}{c} \cdot \frac{1}{i}$ (C) $\frac{1-c}{c} \cdot (1+i)$ (D) $\frac{1-c}{c} \cdot \frac{1}{1+i}$ (E) $\frac{1-c}{c} \cdot \frac{i}{1+i}$ (F) $\frac{c-1}{c} \cdot i$ (G) $\frac{c-1}{c} \cdot \frac{1}{i}$ (H) $\frac{c-1}{c} \cdot (1+i)$ (I) $\frac{c-1}{c} \cdot \frac{1}{1+i}$ (J) $\frac{c-1}{c} \cdot \frac{i}{1+i}$

- (6) x 歳加入、保険期間n 年の定期保険の一時払営業保険料がa、
 - x 歳加入、保険期間n年の生存保険の一時払営業保険料がb、
 - x 歳加入、保険期間n年の養老保険の一時払営業保険料がc、
 - x 歳加入の終身保険の一時払営業保険料がd の場合、
 - x+n 歳加入の終身保険の一時払営業保険料を表す式は次のうちどれか。

ただし、すべての保険は保険金年度末支払かつ保険金額は 1 とし、それぞれの保険の予定事業費は、毎年度始に保険金額 1 に対し γ' のみとし、 γ' はすべての保険について同じ値とする。また、a、b、c およびd はすべて異なる値をとるものとする。

(A)
$$d-a$$
 (B) $c-a$ (C) $\frac{d-a}{c-a}$ (D) $\frac{a+d}{a+c}$ (E) $\frac{b-a}{c-a}$ (F) $\frac{b+a}{c+a}$ (G) $\frac{a+d}{a+b+c}$ (H) $\frac{d-a}{a+b-c}$ (I) $\frac{a+d}{a+b+c+d}$ (J) $\frac{d-a}{c+d-a-b}$

(7) x 歳加入、保険料年払全期払込、保険金年度末支払、保険金額 1、保険期間 20 年の養老保険において、チルメル割合が α である全期チルメル式責任準備金を積み立てたところ、第 1 保険年度末の責任準備金が 0 となった。この保険をチルメル割合が α の 5 年チルメル式責任準備金で積み立てた場合、第 1 保険年度末の責任準備金は $_{x:\overline{20}}$ = $\left(P_{x+1:\overline{19}} - P_{x:\overline{20}}\right)$ × と表すことができ

る。 に当てはまる式は次のうちどれか。

(A)
$$\frac{1}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x:\overline{20}|} - \ddot{a}_{x+1:\overline{4}|} \right)$$
 (B) $\frac{1}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x:\overline{20}|} - \ddot{a}_{x:\overline{5}|} \right)$

(C)
$$\frac{1}{\ddot{a}_{x:5}} \cdot \left(\ddot{a}_{x:20} - \ddot{a}_{x+1:19} \right)$$
 (D) $\frac{1}{\ddot{a}_{x:5}} \cdot \left(\ddot{a}_{x+1:19} - \ddot{a}_{x+1:4} \right)$

(E)
$$\frac{1}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x+1:\overline{19}|} - \ddot{a}_{x:\overline{5}|} \right)$$
 (F)
$$\frac{\alpha}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x:\overline{20}|} - \ddot{a}_{x+1:\overline{4}|} \right)$$

(G)
$$\frac{\alpha}{\ddot{a}_{x:\overline{5}}} \cdot \left(\ddot{a}_{x:\overline{20}} - \ddot{a}_{x:\overline{5}} \right)$$
 (H) $\frac{\alpha}{\ddot{a}_{x:\overline{5}}} \cdot \left(\ddot{a}_{x:\overline{20}} - \ddot{a}_{x+1:\overline{19}} \right)$

$$(1) \quad \frac{\alpha}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x+1:\overline{19}|} - \ddot{a}_{x+1:\overline{4}|} \right) \qquad (J) \quad \frac{\alpha}{\ddot{a}_{x:\overline{5}|}} \cdot \left(\ddot{a}_{x+1:\overline{19}|} - \ddot{a}_{x:\overline{5}|} \right)$$

(8) 3人の被保険者 X、Y、Z の年齢はすべて x 歳とする。このとき、1年後から 2年後までの 1年間 $(1 \le t \le 2)$ に X、Y、Z の順番で全員が死亡する確率を表す式は次のうちどれか。 ただし、 $0 \le t \le 2$ に対して $_t p_x \cdot \mu_{x+t} = a + b \cdot t \ (a \ne 0, b \ne 0)$ が成り立つものとする。

(A)
$$\frac{a^3}{6} + \frac{a^2 \cdot b}{4} + \frac{a \cdot b^2}{4} + \frac{b^3}{6}$$
 (B) $\frac{a^3}{6} - \frac{a^2 \cdot b}{4} + \frac{a \cdot b^2}{4} - \frac{b^3}{6}$

(C)
$$\frac{a^3}{6} + \frac{3a^2 \cdot b}{4} + \frac{3a \cdot b^2}{4} + \frac{5b^3}{6}$$
 (D) $\frac{a^3}{6} - \frac{3a^2 \cdot b}{4} + \frac{3a \cdot b^2}{4} - \frac{5b^3}{6}$

(E)
$$\frac{a^3}{6} + \frac{3a^2 \cdot b}{4} + \frac{9a \cdot b^2}{8} + \frac{9b^3}{16}$$
 (F) $\frac{a^3}{6} - \frac{3a^2 \cdot b}{4} + \frac{9a \cdot b^2}{8} - \frac{9b^3}{16}$

(G)
$$\frac{a^3}{6} + \frac{a^2 \cdot b}{4} + \frac{3a \cdot b^2}{8} + \frac{9b^3}{16}$$
 (H) $\frac{a^3}{6} - \frac{a^2 \cdot b}{4} + \frac{3a \cdot b^2}{8} - \frac{9b^3}{16}$

(1)
$$\frac{a^3}{6} + \frac{3a^2 \cdot b}{8} + \frac{3a \cdot b^2}{8} + \frac{9b^3}{16}$$
 (J) $\frac{a^3}{6} - \frac{3a^2 \cdot b}{8} + \frac{3a \cdot b^2}{8} - \frac{9b^3}{16}$

(9) $\int x$ 歳加入の被保険者が死亡するか要介護状態になったとき、その保険年度末に一時金Iを給付 して消滅する保険」と「x 歳加入の被保険者の毎保険年度始における介護不要な生存に対し、年額 Kの期始払年金を給付し、また要介護状態になったときにはその保険年度末に一時金Lを給付し て消滅する保険」がある。

なお、加入時点において被保険者は介護不要者とし、両保険とも保険期間は終身とする。 また、要介護者でないものは介護不要者であるものとし、要介護者が回復して介護不要者に復帰す ることはないものとする。

両保険の一時払純保険料がすべての年齢で等しくなる場合に、 d^{aa} を表す式は次のうちどれか。

(A)
$$\frac{\left\{K + \left(L + J\right) \cdot v\right\} \cdot l_{x}^{aa} + \left(L + J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v} \qquad \text{(B)} \quad \frac{\left\{K + \left(L - J\right) \cdot v\right\} \cdot l_{x}^{aa} - \left(L - J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v}$$

(C)
$$\frac{\left\{K + \left(L + J\right) \cdot v\right\} \cdot l_{x}^{aa} - \left(L + J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v} \quad \text{(D)} \quad \frac{\left\{K + \left(L - J\right) \cdot v\right\} \cdot l_{x}^{aa} + \left(L - J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v}$$

(E)
$$\frac{\left\{K - \left(L + J\right) \cdot v\right\} \cdot l_{x}^{aa} + \left(L + J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v} \qquad \text{(F)} \qquad \frac{\left\{K - \left(L - J\right) \cdot v\right\} \cdot l_{x}^{aa} + \left(L - J\right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v}$$

(I)
$$\frac{\left\{K + (L - J) \cdot v\right\} \cdot l_{x}^{aa} - (L + J) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v} \qquad \text{(J)} \quad \frac{\left\{K - (L - J) \cdot v\right\} \cdot l_{x}^{aa} - (L + J) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v}$$

(10) x 歳加入、保険料年払全期払込、給付日額1、保険期間n 年の疾病入院保険を考える。この 保険は、疾病により入院した場合、入院日数に給付日額を乗じて得られる金額を疾病入院給付金 として支払う保険である。第は保険年度末平準純保険料式責任準備金を、Vとしたとき、次の算式 中の空欄①、②に当てはまる式は次のうちどれか。

$$_{t}V + \boxed{\bigcirc} - v^{\frac{1}{2}} \cdot h_{x+t} \cdot T_{x+t} = v \cdot (\boxed{\bigcirc}) \cdot {}_{t+1}V \quad (_{0}V = 0, _{n}V = 0)$$

ここで、y 歳 $(y=x,x+1,\cdots,x+n-1)$ における 1 年間の予定疾病入院発生率を h_v 、疾病により 入院した場合の予定平均入院日数を T_{v} とし、入院の発生および疾病入院給付金の支払は入院日数 によらず年央に発生するものとする。また、この保険契約は死亡による脱退の場合にのみ消滅す るものとする。

【①の選択肢】

(A)
$$\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot h_{x+t} \cdot T_{x+t}$$
 (B) $\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}$ $N_x - N_{x+n}$

(C)
$$\frac{\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot (1-q_{x+t}) \cdot h_{x+t} \cdot T_{x+t}}{\ddot{a}_{xn}} \qquad \text{(D) } \frac{\sum_{t=0}^{n-1} v^{\frac{1}{2}} \cdot (1-q_{x+t}) \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}}{N_x - N_{x+n}}$$

$$E) \quad \frac{\sum\limits_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot \left(1-h_{x+t}\right) \cdot h_{x+t} \cdot T_{x+t}}{\ddot{a}_{x:n}} \qquad \qquad (F) \quad \frac{\sum\limits_{t=0}^{n-1} v^{\frac{1}{2}} \cdot \left(1-h_{x+t}\right) \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}}{N_{x} - N_{x+n}}$$

(E)
$$\frac{\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot (1-h_{x+t}) \cdot h_{x+t} \cdot T_{x+t}}{\ddot{a}_{x:\overline{n}|}}$$
(F)
$$\frac{\sum_{t=0}^{n-1} v^{\frac{1}{2}} \cdot (1-h_{x+t}) \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}}{N_x - N_{x+n}}$$
(G)
$$\frac{\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot (1-h_{x+t} - q_{x+t}) \cdot h_{x+t} \cdot T_{x+t}}{\ddot{a}_{x:\overline{n}|}}$$
(H)
$$\frac{\sum_{t=0}^{n-1} v^{\frac{1}{2}} \cdot (1-h_{x+t} - q_{x+t}) \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}}{N_x - N_{x+n}}$$

【②の選択肢】

(A)
$$1-q_{x+t}$$
 (B) $1-h_{x+t}$ (C) $1-h_{x+t}-q_{x+t}$

問題2. x 歳加入、保険料年払全期払込、保険期間n年の次の給付を行う生存保険を考える。

- ・満期まで生存すれば、満期時に保険金2を支払う。
- ・第は保険年度に死亡した場合は、その保険年度末に第は保険年度末平準純保険料式責任準備金 .Vと1の小さい金額を支払う。

なお、解約による消滅はないものとする。

r を $V < 1 < _U V$ を満たす整数とするとき、次の(1) ~ (3) の各間に答えなさい。 (13点)

(1) 年払平準純保険料 P は

と表すことができる。

このとき、①~⑦のそれぞれの空欄に当てはまる最も適切な記号を選択肢の中から1つ選び、 解答用紙の所定の欄にマークしなさい。(ただし、同じ記号を用いてもよい)

- (A) C_r
- (B) C_{x+r} (C) C_{x+r+1}
- (D) C_{x+n}
- (E) D_{r}

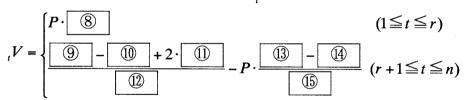
- (F) D_{x+r}
- (G) D_{r+r+1}
- (H) D_{r+n}
- (1) M_x
- (J) M_{rr}

- (K) M_{x+r+1} (L) M_{x+n}
- (M) $N_{\rm r}$
- (N) N_{x+r}
- (0) N_{x+r+1}

- (P) N_{x+n}
- (Q) \ddot{a}_{r}
- (R) a_{r}
- (S) \ddot{a}_{r+1}
- (\top) $a_{\overline{r+1}}$

- (U) *Š*□
- (\vee) s_{\neg}
- (W) \ddot{S}_{r+1}
- (X) $S_{\overline{r+1}}$

(2) 第t保険年度末平準純保険料式責任準備金、Vは



と表すことができる。

このとき、⑧~⑮のそれぞれの空欄に当てはまる最も適切な記号を選択肢の中から1つ選び、 解答用紙の所定の欄にマークしなさい。(ただし、同じ記号を用いてもよい)

- (A) C_r
- (B) C_{rr}
- (C) C_{x+t+1}
- (D) C_{v+n}
- (E) D_{ν}

- (F) D_{x+t}
- (G) D_{x+t+1}
- (H) D_{x+n}
- (1) M_{r}
- (J) M_{r+t}

- (K) M_{x+t+1}
- (L) M_{x+n}
- (M) N_r
- (N) N_{x+t}
- (0) N_{x+t+1}

- (P) N_{r+n}
- (Q) \ddot{a}_{t}
- (R) a_{\Box}
- (S) $\ddot{a}_{\overline{t+1}}$
- (T) $a_{\overline{t+1}}$

- (U) \ddot{s}_{7}
- (\vee) s_{\Box}
- (W) $\ddot{s}_{(+1)}$
- (X) S_{t+1}

(3)
$$A_{x+r\overline{n-r}|}^1=0.129483$$
 , $A_{x+r\overline{n-r}|}^1=0.751643$, 予定利率 $i=1.5\%$ であるとき、 $r=\boxed{\textcircled{1}}$ $\boxed{\textcircled{1}}$ 、 $P=0.0$ $\boxed{\textcircled{1}}$ $\boxed{\textcircled{1}}$ となる。

なお、P計算は、d=0.014778および以下の複利表を用いて、小数点以下第 4 位を四捨五入して小数点以下第 3 位まで求めるものとする。

⑯~⑲のそれぞれの空欄に当てはまる整数を解答用紙の所定の欄にマークしなさい。 ただし、⑯~⑲のそれぞれには、0から9までの整数が1つだけ入るものとする。

マーク例:
$$r = 5$$
 \Rightarrow $r = 0 5 , r = 19 \Rightarrow $r = 19$

$$P = 0.010 \Rightarrow P = 0.010 0 , P = 0.012 \Rightarrow P = 0.012 0$$$

n	$(1.015)^n$
1	1.015000
2	1.030225
3	1.045678
4	1.061364
5	1.077284
6	1.093443
7	1.109845
8	1.126493
9	1.143390
10	1.160541
11	1.177949
12	1.195618
13	1.213552
14	1.231756
15	1.250232
16	1.268986
17	1.288020
18	1.307341
19	1.326951
20	1.346855

n	$(1.015)^n$
21	1.367058
22	1.387564
23	1.408377
24	1.429503
25	1.450945
26	1.472710
27	1.494800
28	1.517222
29	1.539981
30	1.563080
31	1.586526
32	1.610324
33	1.634479
34	1.658996
35	1.683881
36	1.709140
37	1.734777
38	1.760798
39	1.787210
40	1.814018

- 問題3.子供2歳、親32歳加入、保険料年払全期払込、保険金年度末支払、保険期間20年で、つぎの(i)~(ii)の給付を行う親子連生保険を考える。
 - (i)子供が満期まで生存した場合には、満期時に満期保険金1を支払う。
 - (ii)子供が死亡した場合には、死亡保険金として既払込保険料(下記(iii)の払込免除の保険料を含む)を支払い、契約は消滅する。
 - (iii)親が子供よりも先に死亡した場合には、死亡保険金 1 を支払い、その後の保険料の払込を 免除するとともに、親が死亡した保険年度の翌年度始から第 20 保険年度始まで、子供の生 存を条件に年額 0.1 の年金を支払う。
 - この保険について、次の(1)~(3)の各問に答えなさい。

ただし、予定死亡率は親子とも同一の生命表に従うものとし、付加保険料はないものとする。 (13 点)

(1) この保険の年払平準純保険料 P を表す式として、①および②のそれぞれの空欄に当てはまる最も適切な式を選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。

$$P = \boxed{\begin{array}{c} \boxed{1} \\ \boxed{2} \end{array}}$$

- (A) $\ddot{a}_{32:\overline{20}}$
- (C) $\ddot{a}_{32:\overline{20}} (IA)_{2:\overline{20}}^{1}$
- (E) $\ddot{a}_{32\cdot\overline{20}} (IA)_{2,32:\overline{20}}^{1}$
- (G) $A_{2:\overline{20}|}^{1} + A_{2,32:\overline{20}|}^{1} + 0.1a_{2|32:\overline{19}|}$
- (1) $A_{2:\overline{20}|}^{1} + A_{2.32:\overline{20}|}^{1} + 0.1a_{32|2:\overline{19}|}$

- (B) $\ddot{a}_{2.32;\overline{20}}$
- (D) $\ddot{a}_{2.32:\overline{20}} (IA)_{2:\overline{20}}^{1}$
- (F) $\ddot{a}_{2.32:\overline{20}} (IA)_{2,32:\overline{20}}^{1}$
- (H) $A_{2:\overline{20}}^{1} + A_{2,32:\overline{20}}^{1} + 0.1a_{2|32:\overline{20}|}$
 - (J) $A_{2:\overline{20}}^{1} + A_{2,32:\overline{20}}^{1} + 0.1a_{32|2:\overline{20}|}$

(2) 第t保険年度末の将来法純保険料式責任準備金について、親子とも生存の場合を、V、親死亡、子生存の場合を、V'で表すと、責任準備金の再帰式は以下のとおり表すことができる。再帰式、、Vおよび、V'に関し、③~⑥のそれぞれの空欄に当てはまる最も適切な式を選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。(ただし、同じ記号を用いてもよい)

(3) (1) における年払平準純保険料Pを求めたい。Pの値に最も近いものを選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。

たお、 $\ddot{a}_{2:\overline{20}|}=17.399108$ 、 $\ddot{a}_{2,32:\overline{20}|}=17.259293$ 、 $A^1_{2:\overline{20}|}=0.003713$ 、 $A^{-1}_{2,32:\overline{20}|}=0.019940$ 、 $\left(\ddot{I\ddot{a}}\right)_{2:\overline{20}|}=174.006074$ 、d=0.014778 とする。

問題 4.30 歳加入、保険料年払終身払込、保険金即時支払、保険金額 1 の終身保険(主契約)に次の内容の特約を主契約の契約時に付加する。

【特約の内容】

- ・特約の保険料払込期間は30年とする。
- ・60 歳以前に要介護者になった場合には、介護一時金額 0.1 を即時に支払うと同時に、以後の主契約およびこの特約の保険料の払込を免除する。

ここで、主契約およびこの特約の付加保険料はないものとする。

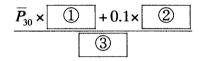
なお、契約時点においては、介護不要者とする。

また、要介護者でないものは介護不要者であるものとし、要介護者が回復して介護不要者に復帰することはないものとする。

なお、要介護者にならずに死亡した場合には、この特約からの給付はないものとする。

このとき、次の(1)~(3)の各問に答えなさい。 (14点)

(1) この特約の年払平準純保険料を表す次の式において、① \sim ③のそれぞれの空欄に当てはまる最も適切な記号を選択肢の中から 1 つ選び、解答用紙の所定の欄にマークしなさい。 なお、 \overline{P}_{30} は主契約の年払平準純保険料とする。



(A)	$\ddot{a}_{30:\overline{30}}$	(B)	$a_{_{30 30:\overline{30} }}$	(C)	a_{30}^{a}	(D)	\ddot{a}_{30}^a	(E)	$a^a_{30:\overline{30}}$
(F)	$\ddot{a}^a_{30:\overline{30}}$	(G)	a_{30}^{aa}	(H)	\ddot{a}_{30}^{aa}	(1)	$a_{30:\overline{30}}^{aa}$	(1)	$\ddot{a}^{aa}_{30:\overline{30}}$
(K)	\ddot{a}_{30}^{i}	(L)	$\ddot{a}^{i}_{30:\overline{30}}$	(M)	a_{30}^{ai}	(N)	$a_{30}^{a(i:\overline{30})}$	(0)	$a_{30:\overline{30}}^{ai}$
(P)	$a_{30:\overline{30}}^{a(i:\overline{30})}$	(Q)	$\hat{a}_{_{30 30:\overline{30} }}$	(R)	$\overline{A}_{30:\overline{30}}^{1}$	(S)	$\overline{A}_{30}^{(i)}$	(T)	$\overline{A}_{30:\overline{30}}^{(i)}$

(2) 次の条件が与えられているとき、(1)の①に一致するものを選択肢の中から1つ選び、解答用 紙の所定の欄にマークしなさい。

(条件)

- ・主契約およびこの特約の介護不要者・要介護者とも、全て同じ生命表に従うものとする。
- ・どの $t(0 \le t \le 30)$ に対しても、 $v^t \cdot p_{30}^{aa} = (v')^t \cdot p_{30}$ が成り立つ。
- ・死亡・要介護脱退残存表は、30 歳を最低年齢 $(\ell_{30}^{ii}=0)$ とする。

ここで、主契約およびこの特約とも予定利率は i とする。また、「'」をつけた記号は、予定利率 としてiの代わりに $j(i \neq i)$ を用いたものとする。((3)も同様とする。)

(A)
$$\ddot{a}_{30} - \ddot{a}'_{30} - A_{30\overline{30}} \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$$

(B)
$$\ddot{a}_{30} - \ddot{a}_{30}' - A_{30,\overline{30}|}' \cdot (\ddot{a}_{60} - \ddot{a}_{60}')$$

(C)
$$\ddot{a}_{30} - \ddot{a}'_{30} + A_{30 \cdot 30} \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$$
 (D) $\ddot{a}_{30} - \ddot{a}'_{30} + A'_{30 \cdot 30} \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$

(D)
$$\ddot{a}_{30} - \ddot{a}'_{30} + A'_{30;\overline{30}|} \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$$

(E)
$$\ddot{a}_{30} - \ddot{a}_{30}' - A_{30:\overline{30}|} \cdot (\ddot{a}_{60} - \ddot{a}_{60}') + A_{30:\overline{30}|}'$$
 (F) $\ddot{a}_{30} - \ddot{a}_{30}' - A_{30:\overline{30}|}' \cdot (\ddot{a}_{60} - \ddot{a}_{60}') + A_{30:\overline{30}|}'$

(F)
$$\ddot{a}_{30} - \ddot{a}'_{30} - A'_{30:30} \cdot (\ddot{a}_{60} - \ddot{a}'_{60}) + A'_{30:30}$$

(G)
$$\ddot{a}_{30} - \ddot{a}'_{30} + A_{30;\overline{30}|} \cdot (\ddot{a}_{60} - \ddot{a}'_{60}) - A'_{30;\overline{30}|}$$
 (H) $\ddot{a}_{30} - \ddot{a}'_{30} + A'_{30;\overline{30}|} \cdot (\ddot{a}_{60} - \ddot{a}'_{60}) - A'_{30;\overline{30}|}$

(H)
$$\ddot{a}_{30} - \ddot{a}'_{30} + A'_{30:\overline{30}|} \cdot (\ddot{a}_{60} - \ddot{a}'_{60}) - A'_{30:\overline{30}|}$$

(I)
$$\ddot{a}_{30} - \ddot{a}'_{30} - (A_{30:\overline{30}|} - A'_{30:\overline{30}|}) \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$$
 (J) $\ddot{a}_{30} - \ddot{a}'_{30} + (A_{30:\overline{30}|} - A'_{30:\overline{30}|}) \cdot (\ddot{a}_{60} - \ddot{a}'_{60})$

(J)
$$\ddot{a}_{30} - \ddot{a}_{30}' + (A_{30:30}^{1} - A_{30:30}'^{1}) \cdot (\ddot{a}_{60} - \ddot{a}_{60}')$$

(3)(2)の条件に加えて、次の追加条件が与えられているとき、(1)の②の近似式として最も適 切な式を選択肢の中から1つ選び、解答用紙の所定の欄にマークしなさい。

(追加条件)

・瞬間要介護者発生率は、30 歳以上において、年齢に関係なく一定 $\left(=\mu^{ai}\right)$ とする。

・
$$\overline{a}'_{30:\overline{30}} \doteq \frac{1}{2} \left(\ddot{a}'_{30:\overline{30}} + a'_{30:\overline{30}} \right)$$
とする。

(A)
$$\frac{1}{2}\mu^{ai}\cdot(\ddot{a}'_{30}-\ddot{a}'_{60})$$

(B)
$$\frac{1}{2}\mu^{ai}\cdot\left(\ddot{a}_{30}'-A_{30:\overline{30}|}'\ddot{a}_{60}'\right)$$

(C)
$$\frac{1}{2}\mu^{ai} \cdot \left(2\ddot{a}'_{30} - A'_{30:\overline{30}|} - 1\right)$$
 (D) $\frac{1}{2}\mu^{ai} \cdot \left(2\ddot{a}'_{30} + A'_{30:\overline{30}|} - 1\right)$

(D)
$$\frac{1}{2}\mu^{ai}\cdot\left(2\ddot{a}_{30}'+A_{30:\overline{30}|}'-1\right)$$

(E)
$$\frac{1}{2}\mu^{ai} \cdot \left(2\ddot{a}'_{30} - 2A'_{30:\overline{30}|} \cdot \ddot{a}'_{60} - 1\right)$$

(E)
$$\frac{1}{2}\mu^{ai}\cdot\left(2\ddot{a}_{30}'-2A_{30:\overline{30}|}'\cdot\ddot{a}_{60}'-1\right)$$
 (F) $\frac{1}{2}\mu^{ai}\cdot\left(2\ddot{a}_{30}'-2A_{30:\overline{30}|}'\cdot\ddot{a}_{60}'+1\right)$

(G)
$$\frac{1}{2}\mu^{ai} \cdot \left(\ddot{a}_{30}' + A_{30;\overline{30}|}' - A_{30;\overline{30}|}' \cdot \ddot{a}_{60}' - 1\right)$$
 (H) $\frac{1}{2}\mu^{ai} \cdot \left(\ddot{a}_{30}' + A_{30;\overline{30}|}' - A_{30;\overline{30}|}' \cdot \ddot{a}_{60}' + 1\right)$

(H)
$$\frac{1}{2} \mu^{ai} \cdot \left(\ddot{a}'_{30} + A'_{30:\overline{30}} - A'_{30:\overline{30}} \cdot \ddot{a}'_{60} + 1 \right)$$

(I)
$$\frac{1}{2}\mu^{ai} \cdot \left(2\ddot{a}_{30}' - A_{30:\overline{30}|}' - 2A_{30:\overline{30}|}' \cdot \ddot{a}_{60}' - 1\right)$$
 (J) $\frac{1}{2}\mu^{ai} \cdot \left(2\ddot{a}_{30}' + A_{30:\overline{30}|}' - 2A_{30:\overline{30}|}' \cdot \ddot{a}_{60}' - 1\right)$

(J)
$$\frac{1}{2} \mu^{ai} \cdot \left(2\ddot{a}'_{30} + A'_{30:\overline{30}} - 2A'_{30:\overline{30}} \cdot \ddot{a}'_{60} - 1 \right)$$

以 上

生保数理(解答例)

問題1. (60点:各6点。ただし、(10)は各3点。)

(1)	(1)	(2)		((C)			
(3)	(E)	(4)		((G)			
(5)	(c)	(6)		((C)			
(7)	(D)	(8)	(E)					
(9)	(B)	(10)	1	(B)	2	(A)		

(1) 第1の生命表および第2の生命表について、

$$\mu_x^{(1)} = 1.5Bc^x \ (c \neq 1)$$

$$\mu_x^{(2)} = Bc^x \ (c \neq 1)$$

が成り立つことから、

$$_{n}p_{x}^{(1)}={}^{(1)}g^{c^{x}(c^{n}-1)}$$
 , $\log^{(1)}g=\frac{-1.5B}{\log c}$

$$_{n}p_{x+a}^{(2)} = {}^{(2)}g^{c^{x+a}(c^{n}-1)}$$
 , $\log^{(2)}g = \frac{-B}{\log c}$

題意より、

$$c^{x}(c^{n}-1)\frac{-1.5B}{\log c} = c^{x+a}(c^{n}-1)\frac{-B}{\log c}$$

が成り立つa が求めるものであるから、

$$c^a = 1.5$$
 より

$$a = \frac{\log \frac{3}{2}}{\log c}$$

解答:(J)

(2) 死亡者数=ℓ₂₀-ℓ₆₀

死亡時平均年齡=
$$\int_{20}^{60} x \cdot \ell_x \cdot \mu_x dx / (\ell_{20} - \ell_{60}) \cdot \cdot \cdot (A)$$

$$\angle \angle C, \int x \cdot \ell_x \cdot \mu_x dx = -\int x \cdot \frac{d\ell_x}{dx} dx = -x \cdot \ell_x - \int \ell_x dx = -x \cdot \ell_x - T_x + 0$$

(A) =
$$\left[-x \cdot \ell_x - T_x\right]_{20}^{60} / (\ell_{20} - \ell_{60}) = \left(-60\ell_{60} - T_{60} + 20\ell_{20} + T_{20}\right) / (\ell_{20} - \ell_{60})$$

= $\left(20 \cdot (\ell_{20} - \ell_{60}) - 40\ell_{60} + T_{20} - T_{60}\right) / (\ell_{20} - \ell_{60}) = 20 + \left(-40\ell_{60} + T_{20} - T_{60}\right) / (\ell_{20} - \ell_{60})$

題意より T_{20} – T_{60} = 10,000、 ℓ_{20} – ℓ_{60} = 40、死亡時平均年齢=50 より

$$50 = 20 + (-40\ell_{60} + 10,000)/40$$

$$\sharp \supset \tau$$
, $\ell_{60} = (10,000 - (50 - 20) \cdot 40)/40 = 220$

解答:(C)

(3) d_x を x 歳から x+1 歳までの解約前死亡者数、 ω_x を x 歳から x+1 歳までの解約者数とする。

$$m_{x}^{d} = \frac{d_{x}}{\ell_{x} - 0.5(\omega_{x} + d_{x})}, \quad m_{x}^{\omega} = \frac{\omega_{x}}{\ell_{x} - 0.5(\omega_{x} + d_{x})} \sharp \mathcal{V},$$

$$\omega_{x} + d_{x} = m_{x}^{d} \cdot (\ell_{x} - 0.5(\omega_{x} + d_{x})) + m_{x}^{\omega} \cdot (\ell_{x} - 0.5(\omega_{x} + d_{x}))$$

$$= \ell_{x} \left(m_{x}^{d} + m_{x}^{\omega} \right) - 0.5(\omega_{x} + d_{x}) \left(m_{x}^{d} + m_{x}^{\omega} \right)$$

$$(\omega_{x} + d_{x}) \left\{ 1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right) \right\} = \ell_{x} \left(m_{x}^{d} + m_{x}^{\omega} \right) \quad \sharp \mathcal{V},$$

$$\omega_{x} + d_{x} = \frac{\ell_{x} \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

$$\sharp \mathcal{F}, \quad \ell_{x+1} = \ell_{x} - (\omega_{x} + d_{x}) = \ell_{x} - \ell_{x} \cdot \frac{m_{x}^{d} + m_{x}^{\omega}}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)} = \ell_{x} \cdot \frac{1 - 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

$$\sharp \mathcal{F}, \quad \ell_{x+1} = \ell_{x} - (\omega_{x} + d_{x}) = \ell_{x} - \ell_{x} \cdot \frac{m_{x}^{d} + m_{x}^{\omega}}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)} = \ell_{x} \cdot \frac{1 - 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

$$\sharp \mathcal{F}, \quad \ell_{x+1} = \ell_{x} - (\omega_{x} + d_{x}) = \ell_{x} - \ell_{x} \cdot \frac{m_{x}^{d} + m_{x}^{\omega}}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)} = \ell_{x} \cdot \frac{1 - 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

$$\sharp \mathcal{F}, \quad \ell_{x+1} = \ell_{x} - (\omega_{x} + d_{x}) = \ell_{x} - \ell_{x} \cdot \frac{m_{x}^{d} + m_{x}^{\omega}}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)} = \ell_{x} \cdot \frac{1 - 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

$$\sharp \mathcal{F}, \quad \ell_{x+1} = \ell_{x} - (\omega_{x} + d_{x}) = \ell_{x} - \ell_{x} \cdot \frac{m_{x}^{d} + m_{x}^{\omega}}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)} = \ell_{x} \cdot \frac{1 - 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}{1 + 0.5 \left(m_{x}^{d} + m_{x}^{\omega} \right)}$$

解答:(E)

(別解)

$$q_x^{d^*}$$
を x 歳の絶対死亡率、 $q_x^{\omega^*}$ を x 歳の絶対解約率とする。 $q_x^{d^*} = \frac{2m_x^d}{2+m_x^d}$ 、 $q_x^{\omega^*} = \frac{2m_x^\omega}{2+m_x^\omega}$ より、
$$p_x^* = \left(1 - q_x^{d^*}\right)\left(1 - q_x^{\omega^*}\right) = \left(1 - \frac{2m_x^d}{2+m_x^\omega}\right)\left(1 - \frac{2m_x^\omega}{2+m_x^\omega}\right) = \left(1 - \frac{2\cdot0.004}{2+0.004}\right)\left(1 - \frac{2\cdot0.08}{2+0.08}\right) \stackrel{:}{=} 0.919$$

(4) 第t+1年度の危険保険料, P'は

$$\begin{aligned} & {}_{t+1}P^r = vq_{x+t}(1 - {}_{t+1}V_{x,n}) \\ & {}_{z} \leq \mathcal{T}, \\ & {}_{t+1}V_{x,n} = 1 - \frac{\ddot{a}_{x+t+1:n-t-1}}{\ddot{a}_{x:n}} \downarrow \mathcal{D} \\ & {}_{t+1}P^r = vq_{x+t} \cdot \frac{\ddot{a}_{x+t+1:n-t-1}}{\ddot{a}_{x:n}} & \cdots & 1 \\ & {}_{v} \leq \ddot{a}_{x+t:n-t} = 1 + v(1 - q_{x+t})\ddot{a}_{x+t+1:n-t-1} & \downarrow \mathcal{D} \\ & v = \frac{\ddot{a}_{x+t:n-t}}{(1 - q_{x+t})\ddot{a}_{x+t+1:n-t-1}} & \cdots & 2 \end{aligned}$$

①、②より

$$P^{r} = \frac{\ddot{a}_{x+t:\overline{n-t}} - 1}{(1 - q_{x+t})\ddot{a}_{x+t+1:\overline{n-t}-1}} \cdot q_{x+t} \cdot \frac{\ddot{a}_{x+t+1:\overline{n-t}-1}}{\ddot{a}_{x:\overline{n}}}$$

$$= \frac{q_{x+t}(\ddot{a}_{x+t:\overline{n-t}} - 1)}{(1 - q_{x+t})\ddot{a}_{x:\overline{n}}}$$

$$= \frac{0.00365 \times (9.1705 - 1)}{(1 - 0.00365) \times 17.0059}$$

$$\stackrel{\rightleftharpoons}{=} 0.00176$$

解答:(G)

(5)
$$_{t}V'_{x:n} = _{t}V_{x:n}$$
 より、 $\frac{\ddot{a}'_{x+t:n-t}}{\ddot{a}'_{x:n}} = \frac{\ddot{a}_{x+t:n-t}}{\ddot{a}_{x:n}}$ $(0 \le t \le n-2)$
また、 $\ddot{a}'_{x:n} = c \times \ddot{a}_{x:n}$ より、 $\frac{\ddot{a}'_{x:n}}{\ddot{a}_{x:n}} = \frac{\ddot{a}'_{x+t:n-1}}{\ddot{a}_{x+t:n-1}} = \cdots = \frac{\ddot{a}'_{x+n-2:2}}{\ddot{a}_{x+n-2:2}} = c$
したがって、 $\frac{\ddot{a}'_{x+t+1:n-t-1}}{\ddot{a}_{x+t+1:n-t-1}} = \frac{\ddot{a}'_{x+t:n-t}}{\ddot{a}_{x+t:n-t}} = \frac{1+vp'_{x+t} \cdot \ddot{a}'_{x+t+1:n-t-1}}{1+vp_{x+t} \cdot \ddot{a}_{x+t+1:n-t-1}} = c \quad (0 \le t \le n-3)$
であることから、 $c \cdot (1+vp_{x+t} \cdot \ddot{a}_{x+t+1:n-t-1}) = 1+vp'_{x+t} \cdot \ddot{a}_{x+t+1:n-t-1}$

$$= 1+vp'_{x+t} \cdot (c \cdot \ddot{a}_{x+t+1:n-t-1})$$
ここで、 $p'_{x+t} = p_{x+t} - \frac{k}{\ddot{a}_{x+t+1:n-t-1}} \quad (0 \le t \le n-3)$ より、
$$c \cdot (1+vp_{x+t} \cdot \ddot{a}_{x+t+1:n-t-1}) = 1+v \cdot (p_{x+t} - \frac{k}{\ddot{a}_{x+t+1:n-t-1}}) \cdot (c \cdot \ddot{a}_{x+t+1:n-t-1})$$

$$= 1+c \cdot v \cdot (p_{x+t} \cdot \ddot{a}_{x+t+1:n-t-1})$$
ゆえに、 $c = 1-c \cdot v \cdot k$ であり、 $k = \frac{1-c}{cv} = \frac{1-c}{c} \cdot (1+i)$

(6) それぞれの保険の一時払営業保険料は、以下の通り。

$$a = A_{x:\overline{n}|}^{1} + \gamma' \cdot \ddot{a}_{x:\overline{n}|}$$

$$b = A_{x:\overline{n}|}^{1} + \gamma' \cdot \ddot{a}_{x:\overline{n}|}$$

$$c = A_{x:\overline{n}|} + \gamma' \cdot \ddot{a}_{x:\overline{n}|}$$

$$d = A_{x} + \gamma' \cdot \ddot{a}_{x}$$

x+n 歳加入の終身保険の一時払営業保険料は、

$$A_{x+n} + \gamma' \cdot \ddot{a}_{x+n} = \frac{M_{x+n}}{D_{x+n}} + \gamma' \cdot \frac{N_{x+n}}{D_{x+n}}$$

$$= \frac{\frac{M_x}{D_x} - \frac{(M_x - M_{x+n})}{D_x} + \gamma' \cdot \left\{ \frac{N_x}{D_x} - \frac{(N_x - N_{x+n})}{D_x} \right\}}{\frac{D_{x+n}}{D_x}}$$

$$= \frac{A_x - A_{x:n}^1 + \gamma' \cdot \ddot{a}_x - \gamma' \cdot \ddot{a}_{x:n}}{A_{x:n}^1}$$

$$= \frac{A_x + \gamma' \cdot \ddot{a}_x - A_{x:n}^1 - \gamma' \cdot \ddot{a}_{x:n}}{A_{x:n}^1 + \gamma' \cdot \ddot{a}_{x:n}^1 - A_{x:n}^1 - \gamma' \cdot \ddot{a}_{x:n}}$$

$$= \frac{d - a}{c - a}$$

となる。

解答:(C)

(7) 第1保険年度末の全期チルメル式責任準備金が0となる場合、

$$\alpha = \left(P_{x+1:\overline{19}} - P_{x:\overline{20}}\right) \cdot \ddot{a}_{x:\overline{20}}$$
 となる。

また、第1保険年度末の5年チルメル式責任準備金は

解答:(D)

(8)
$$_{t}p_{x} \cdot \mu_{x+t} = -\frac{d_{t}p_{x}}{dt}$$
 より、 $_{t}p_{x} = -\int (a+b\cdot t)dt = -a\cdot t - \frac{b}{2}\cdot t^{2} + k (kは定数)$

 $_{0}p_{x}=1$ であることから、k=1 ∴ $_{t}p_{x}=1-a\cdot t-\frac{b}{2}\cdot t^{2}$ となる。

一方、3 人の被保険者X、Y、Zの年齢がすべてx歳であることから、X、Y、Zの順番にかかわらず、1年後から2年後までの1年間に全員が死亡する確率は $(p_x-_2p_x)^3$ であり、X、Y、

Z の死亡する順序は全部で 6 通りあることから、求める確率は $\frac{1}{6}(p_x-p_x)^3$ となる。

解答:(E)

(別解)

3 人の被保険者 X 、 Y 、 Z が 1 年後から 2 年後までの 1 年間に X 、 Y 、 Z の順番で全員が死亡する確率は、 Y の死亡に注目して、次のとおり計算することもできる。 (ここで、 Y 、 Z の年齢は y 、 z と表すこととする。)

$$\int_{1}^{2} (p_{x} - {}_{t}p_{x})_{t} p_{y} \cdot \mu_{y+t} \cdot ({}_{t} p_{z} - {}_{2}p_{z}) dt$$

$$= p_{x} \cdot \int_{1}^{2} {}_{t} p_{y} \cdot p_{z} \cdot \mu_{y+t} dt - \int_{1}^{2} {}_{t} p_{x} \cdot p_{y} \cdot p_{z} \cdot \mu_{y+t} dt - p_{x} \cdot {}_{2}p_{z} \cdot \int_{1}^{2} {}_{t} p_{y} \cdot \mu_{y+t} dt + {}_{2}p_{z} \cdot \int_{1}^{2} {}_{t} p_{x} \cdot p_{y} \cdot \mu_{y+t} dt$$

$$= p_{x} \cdot {}_{1}q_{yz} - {}_{1}q_{xyz} - p_{x} \cdot {}_{2}p_{z} \cdot {}_{1}q_{y} + {}_{2}p_{z} \cdot {}_{1}q_{xy}$$

ここで、x = y = z であることから、 $_{1}q_{yz} = _{1}q_{yz} + _{1}q_{yz}$ 、 $_{1}q_{xyz} = _{1}q_{xyz} + _{1}q_{xyz} + _{1}q_{xyz} + _{1}q_{xyz}$ 、 $_{1}q_{xy} = _{1}q_{xy} + _{1}q_{xy}$ に注意すれば、

$$\begin{split} & \int_{1}^{2} \left(p_{x} - _{t} p_{x} \right)_{t} p_{y} \cdot \mu_{y+t} \cdot \left(_{t} p_{z} - _{2} p_{z} \right) dt \\ &= p_{x} \cdot \frac{1}{2} _{1} q_{xx} - \frac{1}{3} _{1} q_{xxx} - p_{x} \cdot _{2} p_{x} \cdot _{1} q_{x} + _{2} p_{x} \cdot \frac{1}{2} _{1} q_{xx} \\ &= \frac{1}{2} p_{x} \cdot \left(p_{xx} - _{2} p_{xx} \right) - \frac{1}{3} \left(p_{xxx} - _{2} p_{xxx} \right) - p_{x} \cdot _{2} p_{x} \cdot \left(p_{x} - _{2} p_{x} \right) + \frac{1}{2} _{2} p_{x} \cdot \left(p_{xx} - _{2} p_{xxx} \right) \\ &= \frac{1}{6} \left(p_{x} \right)^{3} - \frac{1}{2} \left(p_{x} \right)^{2} \cdot _{2} p_{x} + \frac{1}{2} p_{x} \cdot \left(_{2} p_{x} \right)^{2} - \frac{1}{6} \left(_{2} p_{x} \right)^{3} = \frac{1}{6} \left(p_{x} - _{2} p_{x} \right)^{3} \end{split}$$

(9) 被保険者の年齢がxのとき、両保険の一時払純保険料をそれぞれ P_1,P_2 とすると

$$P_1 = J \cdot \sum_{t=0}^{\infty} \frac{v^{t+1}}{l_x^{aa}} \cdot \left(d_{x+t}^{aa} + i_{x+t} \right)$$

$$P_{2} = K \cdot \ddot{a}_{x}^{aa} + L \cdot A_{x}^{(i)} = \sum_{t=0}^{\infty} \frac{v^{t}}{l_{x}^{aa}} \cdot \left(K \cdot l_{x+t}^{aa} + L \cdot v \cdot i_{x+t} \right)$$

であるが、両者が等しければ

$$J \cdot \sum_{t=0}^{\infty} v^{t+1} \cdot \left(d_{x+t}^{aa} + i_{x+t} \right) = \sum_{t=0}^{\infty} v^{t} \cdot \left(K \cdot l_{x+t}^{aa} + L \cdot v \cdot i_{x+t} \right)$$

仮定によりここで x のかわりに、x+1 を入れても等式が成立するが、その式で両辺に v を掛ければ、

$$J \cdot \sum_{t=0}^{\infty} v^{t+2} \cdot \left(d_{x+t+1}^{aa} + i_{x+t+1} \right) = \sum_{t=0}^{\infty} v^{t+1} \cdot \left(K \cdot l_{x+t+1}^{aa} + L \cdot v \cdot i_{x+t+1} \right)$$

もとの式からこの式を引くと

$$J \cdot v \cdot (d_x^{aa} + i_x) = K \cdot l_x^{aa} + L \cdot v \cdot i_x$$

となり、これがすべての年齢で成立する。この式に

$$i_x = l_x^{aa} - l_{x+1}^{aa} - d_x^{aa}$$

を入れて整理すると

$$L \cdot v \cdot d_{x}^{aa} = K \cdot l_{x}^{aa} - J \cdot v \left(l_{x}^{aa} - l_{x+1}^{aa} \right) + L \cdot v \left(l_{x}^{aa} - l_{x+1}^{aa} \right)$$

$$d_{x}^{aa} = \frac{\left\{ K + \left(L - J \right) \cdot v \right\} \cdot l_{x}^{aa} - \left(L - J \right) \cdot v \cdot l_{x+1}^{aa}}{L \cdot v}$$

解答:(B)

(10) 年払平準純保険料をPとすると、

収入現価=
$$P \cdot \ddot{a}_{x:n}$$
、給付現価= $\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot_{t} p_{x} \cdot h_{x+t} \cdot T_{x+t}$ より、

$$P = \frac{\sum_{t=0}^{n-1} v^{t+\frac{1}{2}} \cdot p_x \cdot h_{x+t} \cdot T_{x+t}}{\ddot{a}_{x:n}} = \frac{\sum_{t=0}^{n-1} v^{\frac{1}{2}} \cdot \frac{D_{x+t}}{D_x} \cdot h_{x+t} \cdot T_{x+t}}{\frac{N_x - N_{x+n}}{D_x}} = \frac{\sum_{t=0}^{n-1} v^{\frac{1}{2}} \cdot D_{x+t} \cdot h_{x+t} \cdot T_{x+t}}{N_x - N_{x+n}}$$

となる。

平準純保険料式責任準備金,Vは、Pを用いて、

$$V = \sum_{r=0}^{n-t-1} v^{r+\frac{1}{2}} \cdot_{r} p_{x+t} \cdot h_{x+t+r} \cdot T_{x+t+r} - P \cdot \ddot{a}_{x+t,n-t}$$
となる。
$$V = v^{\frac{1}{2}} \cdot h_{x+t} \cdot T_{x+t} + \sum_{r=1}^{n-t-1} v^{r+\frac{1}{2}} \cdot_{r} p_{x+t} \cdot h_{x+t+r} \cdot T_{x+t+r} - P \cdot \left(1 + v \cdot p_{x+t} \cdot \ddot{a}_{x+t+1,n-t-1}\right)$$

$$V + P - v^{\frac{1}{2}} \cdot h_{x+t} \cdot T_{x+t} = v \cdot p_{x+t} \sum_{r=1}^{n-t-1} v^{r-\frac{1}{2}} \cdot_{r-1} p_{x+t+1} \cdot h_{x+t+r} \cdot T_{x+t+r} - v \cdot p_{x+t} \cdot P \cdot \ddot{a}_{x+t+1,n-t-1}$$

$$= v \cdot p_{x+t} \sum_{r=0}^{n-t-2} v^{r+\frac{1}{2}} \cdot_{r} p_{x+t+1} \cdot h_{x+t+1+r} \cdot T_{x+t+1+r} - v \cdot p_{x+t} \cdot P \cdot \ddot{a}_{x+t+1,n-t-1}$$

$$= v \cdot p_{x+t} \cdot t+1 V$$

$$= v \cdot (1 - q_{x+t}) \cdot t+1 V$$
解答:① (B)、② (A)

問題 2. (13点)

(1)	1	(1)	2	(L	_)	3	(H)	4	(N	1)	5	(P)	6	(F)
	7	(U)	(⑥・⑦は順不同)												
(2)	8	(U)	9	(1)	10	(L)	(1)	(H	1)	12	(F)	13	(N)
	(14)	(P)	15)	(F	-)									•	
(3)	16	1		17	1		18		8	(19		1		

(1) 責任準備金の再帰式は、

$$(k=1, 2, \cdots, r)$$
 (A) $(k=1, 2, \cdots, r)$ (B) $(k=1, 2, \cdots, n)$ (B) $(k=1, 2, \cdots, n)$ (B) $(k=1, 2, \cdots, n)$ (C) $(k=r+1, r+2, \cdots, n)$ (C) $(k=r+1, r+2,$

$$\sum_{k=1}^{r} v^{k-1} \qquad ...$$

$$P \cdot \sum_{k=1}^{r} v^{k-1} \cdot = v^{r} \cdot_{r} V - v^{0} \cdot_{0} V = v^{r} \cdot_{r} V \qquad \text{\sharp $>$} \tau = P \cdot \frac{\ddot{a}_{r}}{v^{r}} = P \cdot \frac{\ddot{a}_{r}}{v^{r}} = P \cdot \ddot{s}_{r}$$

(B)
$$\exists b$$
, $D_{x+k-1} \cdot_{k-1} V + D_{x+k-1} \cdot P = C_{x+k-1} + D_{x+k} \cdot_{k} V$
 $D_{x+k-1} \cdot_{k-1} V - D_{x+k} \cdot_{k} V + D_{x+k-1} \cdot P = C_{x+k-1}$

$$\sum_{x+k-1} x_{-k-1} = \sum_{x+k-1} x_{-k-1} = \sum_{x+k-$$

これをk=r+1からnまで加えると

$$\begin{split} D_{x+r}\cdot_{r}V - D_{x+n}\cdot_{n}V + P \cdot \sum_{k=r+1}^{n} D_{x+k-1} &= \sum_{k=r+1}^{n} C_{x+k-1} \\ nV &= 2 \, \&\, \mathcal{O} \quad D_{x+r}\cdot_{r}V - 2 \cdot D_{x+n} + P \cdot \left(N_{x+r} - N_{x+n}\right) = M_{x+r} - M_{x+n} \\ &\subset \mathcal{C}, \quad rV &= P \cdot \ddot{S}_{r} \, \&\, \mathcal{O} \,, \quad P \cdot \left(\ddot{S}_{r} - D_{x+r} + N_{x+r} - N_{x+n}\right) = 2 \cdot D_{x+n} + M_{x+r} - M_{x+n} \\ &\&\, \mathcal{O} \, \mathcal{T} \end{split}$$

$$P = \frac{\boxed{\boxed{M}_{x+r}} - \boxed{\boxed{2}M_{x+n}} + 2 \cdot \boxed{\boxed{3}D_{x+n}}}{\boxed{\boxed{N}_{x+r}} - \boxed{\boxed{5}N_{x+n}} + \boxed{\boxed{6}D_{x+r}} \cdot \boxed{\boxed{7}\ddot{s}_{r}}}$$

① (J)、② (L)、③ (H)、④ (N)、⑤ (P)、⑥ (F)、⑦ (U)

(⑥・⑦は順不同)

(2) 1≦*t*≦*r* の場合

(A)より $v^{k-1} \cdot P = v^k \cdot_k V - v^{k-1} \cdot_{k-1} V$ を k = 1 から t まで加えると $t^{V} = P \cdot \boxed{8\ddot{s}_{t}}$ となる。 $r+1 \le t \le n$ の場合

(B) より、
$$D_{x+k-1}\cdot_{k-1}V - D_{x+k}\cdot_{k}V + D_{x+k-1}\cdot P = C_{x+k-1}$$
 これを $k = t+1$ から n まで加えると、 $D_{x+t}\cdot_{t}V - 2\cdot D_{x+n} + P\cdot \left(N_{x+t} - N_{x+n}\right) = \left(M_{x+t} - M_{x+n}\right)$

$$D_{x+t} \cdot_{t} V - 2 \cdot D_{x+n} + P \cdot (N_{x+t} - N_{x+n}) = (M_{x+t} - M_{x+n})$$

$$\downarrow \supset \subset \cdot_{t} V = \frac{ \underbrace{ 9M_{x+t} - 10M_{x+n} + 2 \cdot 10D_{x+n} }_{ \underbrace{ 15D_{x+t} }} - P \cdot \frac{ \underbrace{ 3N_{x+t} - 10M_{x+n} }_{ \underbrace{ 15D_{x+t} }} }_{ \underbrace{ 15D_{x+t} }}$$

(3) 題意より r は $V = P \cdot \ddot{s}$ を満たす最大の整数である。

(1) より

$$P \cdot \ddot{s}_{r} = \frac{M_{x+r} - M_{x+n} + 2 \cdot D_{x+n}}{N_{x+r} - N_{x+n} + D_{x+r} \cdot \ddot{s}_{r}} \ddot{s}_{r} = \frac{M_{x+r} - M_{x+n}}{D_{x+r}} + 2 \cdot \frac{D_{x+n}}{D_{x+r}} \cdot \ddot{s}_{r} = \frac{\left(A_{x+r,n-r}^{1} + 2 \cdot A_{x+r,n-r}^{1}\right) \cdot \ddot{s}_{r}}{\ddot{a}_{x+r,n-r} + \ddot{s}_{r}} < 1$$

$$\therefore \left(A_{x+r,n-r}^{1} + 2 \cdot A_{x+r,n-r}^{1}\right) \cdot \ddot{s}_{r} < \ddot{a}_{x+r,n-r} + \ddot{s}_{r} = \frac{1}{d} \cdot \left(1 - A_{x+r,n-r}\right)$$

$$\left(A_{x+r,n-r}^{1} + 2 \cdot A_{x+r,n-r}^{1} - 1\right) \cdot \ddot{s}_{r} < \ddot{a}_{x+r,n-r} = \frac{1}{d} \cdot \left(1 - A_{x+r,n-r}\right)$$

$$\ddot{s}_{r} < \frac{1 - A_{x+r,n-r}}{d \cdot \left(A_{x+r,n-r}^{1} + 2 \cdot A_{x+r,n-r}^{1} - 1\right)} = \frac{1 - 0.129483 - 0.751643}{d \cdot (0.129483 + 2 \cdot 0.751643 - 1)} = \frac{0.118874}{0.632769 \cdot d}$$

$$\ddot{s}_{r} = \frac{(1+i)' - 1}{d} + \ddot{s} \cdot \ddot{b} \cdot (1+i)' < 1 + \frac{0.118874}{0.632769} \stackrel{=}{=} 1.187863$$

$$(1.015)^{11} = 1.177949 < 1.187863 \cdot (1.015)^{12} = 1.195618 > 1.187863 + b \cdot r = \boxed{0.118874}$$

$$\mathcal{D} = \frac{A_{x+r,n-r}^{1}}{\ddot{a}_{x+r,n-r}} + 2 \cdot A_{x+r,n-r}^{1}}{\ddot{a}_{x+r,n-r}} = \frac{A_{x+r,n-r}^{1}}{1} + 2 \cdot A_{x+r,n-r}^{1}}{\frac{1}{d} \cdot \left(1 - A_{x+r,n-r}\right)} + \frac{(1+i)' - 1}{d}}{\frac{1}{d} \cdot \left(1 + i\right)' - A_{x+r,n-r}^{1}}} = \frac{0.014778 \cdot (0.129483 + 2 \cdot 0.751643)}{1.177949 - 0.129483 - 0.751643} \stackrel{=}{=} 0.08129 \rightarrow P \stackrel{=}{=} 0.0 \boxed{0.88} \boxed{0}$$

$$P \stackrel{=}{=} 0.0 \boxed{0.88} \boxed{0}$$

(13点) 問題3.

(1)	1			(1)				(D)						
	3	(Z)	4	(S)	(5)	(T)	6	(H)	7	(N)	8	(E)		
(2)	9	(1)	10	(K)	11)	(B)	12)	(E)	13	(H)	(14)	(N)		
	15	(1)	16	(B)	(なお、⑨、⑩は順不同)						-			
(3)		(G)												

(1) この保険の年払平準純保険料を Pとすると、

収入現価は、*Pä*_{2-32:20}

支出現価は、

(i)の部分: A2101

(ii)の部分: P(IA)2201

(iii)の部分: $A_{2,32;\overline{20}}^{1} + 0.1a_{32|2;\overline{19}|}$

収支相等の原則より

$$P\ddot{a}_{2,32:\overline{20}|} = A_{2:\overline{20}|} + P(IA)_{2:\overline{20}|}^{1} + A_{2,32:\overline{20}|}^{1} + 0.1a_{32|2:\overline{19}|}$$

$$A_{2:\overline{20}} + A_{2,32:\overline{20}} + 0.1a_{32}$$

$$P = \frac{A_{2:\overline{20}|} + A_{2,32:\overline{20}|}^{1} + 0.1a_{32|2:\overline{19}|}}{\ddot{a}_{2,32:\overline{20}|} - (IA)_{2:\overline{20}|}^{1}}$$

解答:①(I)、②(D)

(2) 第t保険年度末の将来法純保険料式責任準備金は以下のとおり表せる。

・親子とも生存の場合

$$_{t}V = P\left\{t\cdot A_{2+t:\overline{20-t}}^{1} + \left(IA\right)_{2+t:\overline{20-t}}^{1} - \ddot{a}_{2+t,32+t:\overline{20-t}}\right\} + A_{2+t:\overline{20-t}}^{1} + A_{2+t:\overline{20-t}}^{1} + 0.1\left(\ddot{a}_{2+t:\overline{20-t}} - \ddot{a}_{2+t,32+t:\overline{20-t}}\right)$$

・親死亡、子生存の場合
$${}_{t}V' = P\left\{t \cdot A_{2+t:20-t}^{1} + \left(IA\right)_{2+t:20-t}^{1}\right\} + A_{2+t:20-t}^{1} + 0.1\ddot{a}_{2+t:20-t}$$

これらを用いて、責任準備金の再帰式を表すと

$$v_{t-1}V + P = vq_{2+(t-1)} \cdot t \cdot P + vp_{2+(t-1),32+(t-1)} \cdot V + vp_{2+(t-1)} \cdot q_{32+(t-1)} \cdot V'$$

$$+ vp_{2+(t-1)} \cdot q_{32+(t-1)} + vq_{2+(t-1),32+(t-1)}^{2}$$

(3)(1)より

$$P = \frac{A_{2:\overline{20}|} + A_{2,32:\overline{20}|}^{1} + 0.1a_{32|2:\overline{19}|}}{\ddot{a}_{2,32:\overline{20}|} - (IA)_{2:\overline{20}|}^{1}} \qquad \cdots 1$$

$$\angle \angle C, \quad a_{32|2:\overline{19}|} = \ddot{a}_{2:\overline{20}|} - \ddot{a}_{2,32:\overline{20}|} \qquad \cdots 2$$

$$A_{2:\overline{20}|} = A_{2:\overline{20}|} - A_{2:\overline{20}|}^{1} = 1 - d\ddot{a}_{2:\overline{20}|} - A_{2:\overline{20}|}^{1} \cdot \cdot \cdot \cdot \Im$$

$$(IA)_{2:\overline{20}|}^{1} = \ddot{a}_{2:\overline{20}|} - d(I\ddot{a})_{2:\overline{20}|} - 20A_{2:\overline{20}|}^{1}$$

$$= \ddot{a}_{2:\overline{20}|} - d(I\ddot{a})_{2:\overline{20}|} - 20(1 - d\ddot{a}_{2:\overline{20}|} - A_{2:\overline{20}|}^{1})$$

$$= (1 + 20d)\ddot{a}_{2:\overline{20}|} - d(I\ddot{a})_{2:\overline{20}|} + 20(A_{2:\overline{20}|}^{1} - 1) \cdot \cdot \cdot 4$$

が成り立つ。

したがって、②、③および④を①に代入すると

$$P = \frac{1 - d\ddot{a}_{2:\overline{20}|} - A_{2:\overline{20}|}^{1} + A_{2,32:\overline{20}|}^{1} + 0.1(\ddot{a}_{2:\overline{20}|} - \ddot{a}_{2,32:\overline{20}|})}{\ddot{a}_{2,32:\overline{20}|} - (1 + 20d)\ddot{a}_{2:\overline{20}|} + d(I\ddot{a})_{2:\overline{20}|} + 20(1 - A_{2:\overline{20}|}^{1})}$$

$$= 0.044908$$

解答:(G)

問題 4. (14点)

(1)	1)	(N)	2	(T)		3	(1)
(2)		(B)		(3)		(,	1)

(1) この特約の年払平準純保険料を表す式は

$$\frac{\overline{P_{30}} \times \boxed{ 1 \ a_{30}^{a[i:\overline{30}]} + 0.1 \times \boxed{2 \ \overline{A_{30:\overline{30}}}}}{\boxed{3 \ \ddot{a}_{30:\overline{30}]}}$$

となる。

解答:①(N)、②(T)、③(J)

$$\begin{array}{ll} a_{30}^{a(i:\overline{30}|)} &= \sum_{t=1}^{30} v^{t} \cdot \frac{\ell_{30+t}^{ii}}{\ell_{30}^{aa}} + v^{30} \cdot \frac{\ell_{60}^{ii}}{\ell_{30}^{aa}} \cdot a_{60} & \left(\ell_{30}^{ii} = 0, a_{60}^{i} = a_{60} \right) \\ &= \sum_{t=1}^{30} v^{t} \cdot \frac{\ell_{30+t} - \ell_{30}^{aa}}{\ell_{30}^{aa}} + v^{30} \cdot \frac{\ell_{60} - \ell_{60}^{aa}}{\ell_{30}^{aa}} \cdot a_{60} \\ &= (a_{30:\overline{30}|} - a_{30:\overline{30}|}^{aa}) + (_{30|}a_{30} - v^{30} \cdot _{30}p_{30}^{aa} \cdot a_{60}) & \left(\ell_{30} = \ell_{30}^{aa} \right) \right) \\ &= a_{30} - a_{30:\overline{30}|}^{aa} - (v')^{30} \cdot _{30}p_{30} \cdot a_{60} & \left(v^{30} \cdot _{30}p_{30}^{aa} = (v')^{30} \cdot _{30}p_{30} \right) \right) \\ &= a_{30} - a_{30:\overline{30}|}^{aa} - (v')^{30} \cdot _{30}p_{30} \cdot a_{60} & \left(v^{t} \cdot_{t}p_{30}^{aa} = (v')^{t} \cdot_{t}p_{30} \right) \right) \\ &= (\ddot{a}_{30} - 1) - (\ddot{a}_{30:\overline{30}|}^{aa} - 1 + A_{30:\overline{30}|}^{aa}) \cdot \ddot{a}_{60} & \left(\ddot{a}_{30:\overline{30}|}^{aa} - a_{30:\overline{30}|}^{aa} - a_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} \right) \\ &= \ddot{a}_{30} - \ddot{a}_{30}^{a} - \ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} & \left(\ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} \right) \\ &= \ddot{a}_{30} - \ddot{a}_{30}^{a} - \ddot{a}_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} & \left(\ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} \right) \\ &= \ddot{a}_{30} - \ddot{a}_{30}^{a} - \ddot{a}_{30:\overline{30}|}^{aa} \cdot \ddot{a}_{60} & \left(\ddot{a}_{30:\overline{30}|}^{aa} - \ddot{a}_{30:\overline{30}|}^{aa} - \ddot$$

$$\overline{A}_{30:30}^{(i)} = \int_{0}^{30} v^{t} \cdot_{t} p_{30}^{aa} \cdot \mu^{ai} dt
= \mu^{ai} \times \int_{0}^{30} (v')^{t} \cdot_{t} p_{30} dt \qquad \left(v^{t} \cdot_{t} p_{30}^{aa} = (v')^{t} \cdot_{t} p_{30} \sharp \mathcal{D}\right)
= \mu^{ai} \times \overline{a}'_{30:30}
= \frac{1}{2} \mu^{ai} \cdot \left(\ddot{a}'_{30:30} + a'_{30:30}\right) \qquad \left(\underbrace{\mathbb{B}} \sharp \mathcal{D} \right)
= \frac{1}{2} \mu^{ai} \cdot \left(2 \times \ddot{a}'_{30:30} - 1 + A'_{30:30}\right)
= \frac{1}{2} \mu^{ai} \cdot \left(2 \ddot{a}'_{30} + A'_{30:30} - 2A'_{30:30}\right) \quad \left(\ddot{a}'_{30:30} = \ddot{a}'_{30} - A'_{30:30}\right) \ddot{a}_{60} \sharp \mathcal{D} \right)$$

解答: (J)