数 学 2 (問題)

(解答に当り、必要であれば末尾の数表を用いよ。)

1

. ?	欠	の	各	間	Ø					に	入	る	答	の	J.	を	`	所	定	の角	72	\$ JI] 組	ŧ ic	記	入	せ	ょ	^							(3	0 Ё	į)
(1		X	(1	, ;	≤	•	•		≨ Z	Χ,	5 }	を	対	応	す	る	順	序	統	の一計量	ll d	: L	ν,	そ												变量	٤	する	3.
(2)		次	の (;	確 v	率	密.	度の)	関	数(を ())	持 ()	つ	母/,	集 」)	∄	か ? .1	5 (#	の > +	n ¶ (–	图 (り 標 <i>よ</i>	票 本 一	· 変 μ	量)	X / c	ı. ; }	Х	2 . (x	 ≧ <	μ)		X	n を	考,	える		
		ح بر	こ	にの	、 共	- に	※未	< 知	μ と	< す	∞ る	と	o き	>	0 σ	と の	す 最	る尤	。 推	定員	最に	ł				で	あ	る。	•			,~ ,							
(3	}		母 f	数 (.	θ (c)	を =	持(〈(つ () ()	母 k J	集 x "	団	か (6 0 x	Ø≤	統 x 0	# ≦	量 1 r	X)	は <i>x</i>	次 <i>0</i> > 1	り 69 ()	在斗	医溶	下度	関	数	に	し	たヵ	55 -	.								
		ことま	こきた	に 、 、	、 第 対	k 1 立	は種仮	定の説	数誤が	で り H	あの・	る 起 : (。 こ 9 =	x る = 4	> 確	O 率) 場	は まる	9	の (I		】で 2	を変して	うる	۰.												検り あ・	定さ る。	ħ	る
(4		分な	散く	は と	1	6	で	あ	ှ]	た よ	。 り	も 大	う き	1 け	つれ	の ば	母 2	集つ	団 の	か ¢ 母 \$	5 杉 長 E	票本	s 数 O 分	(9 日 日 日 日	の ! は	標同	本じ	をして	取 なし	り 出 ハ と	出し	たえ	とる	き 。	、材	本	分	散え	が少
(5		求	め	ょ	o)																													•		標:		•
		るこ	。 の	<i>θ</i> と	の き	確周	率辺	密確	度率	関密	数度	は関	ξ 数	(6)) f (= x	θ) =	e	x	p (θ.) ま	(た.	$\frac{\theta}{x}$	> (こ <u>ま</u>	}) ţ -	で く	あ θ	る の	こべ	とな	が タ ズ 打	か能定	· つ	てし	ハる		
								直に		* 	Л]		န] .	۲	E	(6	' 1	x	, =	• }	θ	; j ;>	x	A I	ı x	10	16	,	で	ラ	ス	5 1	กล	5.					
		Œ	規	分	布	の	分	散	の	帰	無	仮	説	Н	o :	c	2	=	σ	o ² 0) 存	可應	(水	(準	5	%	の	片有	刚木	负 ቯ	2 K	お	()	τ.	. 娟	無	仮	説っ	で仮

2. 正規 分布の分散の 相無 仮説 日 。: 6 1 - 6 1 で何 息 水準 5 % の 月 側 模 定 に お い て 、 帰 無 仮 説 で 仮 定 し た 分 散 o o 2 が 真 の 分 散 の 4 分 の 1 以 下 で あ る と き に 、 こ の 帰 無 仮 説 日 。 が 確 率 9 9 % 以 上 で 棄 却 さ れ る た め に は 標 本 数 は 最 低 い く つ 必 要 か 。 こ こ に 、 平 均 、 分 散 は 未 知 と す る 。

(20点)

- 3. X₁, X₂, · · · , X_nは平均、分散が未知の正規母集団からの標本変量とするとき、次の間に答えよ。
 - $\{1\}$ 標本変量分散 $S^2 = -\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$ は分散の最尤推定量であることを示せ。

(2)
$$S'^2 = \frac{1}{n^{-1}} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
は分散の不偏推定量であることを示せ。 (2.5点)

4. 平均 μ 、分散 σ^2 の値が未知のとき、正規母集団 N $\{\mu, \sigma^2\}$ からの大きさnの標本値 x_1, \cdots, x_n を用いて、母平均についての帰無仮説 H $\sigma: \mu = \mu$ σ を有意水準 σ で検定したい。対立仮説を H $\sigma: \mu \neq \mu$ σ とするとき、尤度比検定を用いても検定を導け。 (2.5点)

(解答に当り、必要であれば以下の数表を用いよ。)

数表

(1) X が F 分布 にしたがうとき、 P (X ≥ λ) = 0. 025 となる λ を求める表 f 1は分母の自由度、 f 2は分子の自由度 λ = F (1² (0.025)とも書く。

f 2	8	9	1 0
fı			
8	4 . 4 3	4.36	4.30
9	4.10	4.03	3.96
10	3.85	3.78	3.72

 (2) X が x²分布にしたがうとき、P (X≥λ) = εとなるλを求める表 n は自由度
 λ = x²n(ε)とも書く。

3	0.99	0.95	0.05	0.01
n				
1 5	5.23	7.26	25.0	30.6
16	5.81	7.96	26.3	32.0
1 7	6.41	8.67	27.6	33.4
1 8	7.01	9.39	28.9	34.8
19	7.63	10.12	30.1	36.2
2 0	8.26	10.85	31.4	37.6

数学2解答例

1.

(1) 各 Xi の確率密度関数 f(x) は題意より $0 \le x \le l$ で 1/l, その他で 0 である。 一般に、R の確率密度関数 g(r)は、f(x)を用いて次のように表わせる。

$$g(r) = 5 \cdot 4 \int_{-\infty}^{\infty} \left(\int_{x(1)}^{r+x(1)} f(t) dt \right)^{3} f(x_{(1)}) \cdot f(r+x_{(1)}) dx_{(1)}$$

$$= 20 \int_{0}^{l-r} (r/l)^{3} \cdot (1/l) \cdot (1/l) dx_{(1)} = \frac{20r^{3} \cdot (l-r)}{l^{5}}$$

$$E(R^{n}) = \int_{0}^{l} r^{n} \cdot g(r) dr = \int_{0}^{l} 20 \left(\frac{r^{n+3}}{l^{4}} - \frac{r^{n+4}}{l^{5}} \right) dr$$
$$= 20 \cdot \left\{ \frac{l^{n}}{n+4} - \frac{l^{n}}{n+5} \right\} = \boxed{\frac{20l^{n}}{(n+4)(n+5)}}$$

(2) 尤度関数 $L(x_1, \dots, x_n; \mu, \sigma)$ は次のように表わされる。

$$L(x_1, \dots, x_n; \mu, \sigma) = \prod_{i=1}^{n} f(x_i; \mu, \sigma) = \sigma^{-n} \exp \left\{ -\left(\sum_{i=1}^{n} x_i - n\mu\right) / \sigma \right\}$$

 μ , σ をそれぞれ $-\infty<\mu<\infty$, $\sigma>0$ の範囲で動かしてLを最大にする σ を求める。

$$\frac{\partial L}{\partial \sigma} = -n \sigma^{-n-1} \cdot \exp\left\{-\left(\sum_{i=1}^{n} x_{i} - n\mu\right)/\sigma\right\}$$

$$+ \sigma^{-n} \cdot \left(\sum_{i=1}^{n} x_{i} - n\mu\right)/\sigma^{2} \cdot \exp\left\{-\left(\sum_{i=1}^{n} x_{i} - n\mu\right)/\sigma\right\}$$

$$= \sigma^{-n-2} \cdot \exp\left\{-\left(\sum_{i=1}^{n} x_{i} - n\mu\right)/\sigma\right\}\left(\sum_{i=1}^{n} x_{i} - n\mu - n\sigma\right) = 0$$
を解いて $\sigma = \left(\sum_{i=1}^{n} x_{i}/n\right) - \mu$

また,
$$\frac{\partial L}{\partial \mu} = n \sigma^{-n-1} \cdot \exp\{-(\sum_{i=1}^{n} x_i - n\mu)/\sigma\} > 0$$
なので, L は μ について単調に

増加する。一方 $f(x; \mu, \sigma)$ の定義域を考えれば、 $\mu \leq x_1$ 、…、 x_n であるから μ は $\min(x_1, \dots, x_n)$ 以上には大きくとれない。L は $\mu = \min(x_1, \dots, x_n)$ で極大となる。 また、 $\sum_{i=1}^n x_i - n\mu > n\sigma$ では $\partial L/\partial \sigma > 0$ 、 $\sum_{i=1}^n x_i - n\mu < n\sigma$ では $\partial L/\partial \sigma < 0$ である

ので
$$\sigma$$
の最尤推定量は $\sigma = \left[\left(\sum\limits_{i=1}^{n} Xi\right)/n - \min(X_1, \ \cdots, \ X_n)\right]$ である。 $\overline{X} - \min Xi$ も正

解とした。

(3)

$$\int_0^1 f(x)dx = \left[\frac{kx^{\theta+1}}{\theta+1}\right]_0^1 = k/(\theta+1) = 1 \pm h = h + 1$$

$$\therefore f(x) = (\theta + 1)x^{\theta}$$

第1種の誤りとは H_0 が正しいとき($\theta=1$), H_0 を正しくないと判定することだから、x>0.9の区間を棄却域とすると、その確率は

$$\int_{0.9}^{1} f(x) dx = \int_{0.9}^{1} 2 x dx = \boxed{0.19}$$

第2種の誤りとは対立仮説が正しいとき($\theta=4$), H_0 を正しいとする誤りであるから、その確率は

$$\int_{0}^{0.9} f(x) dx = \int_{0}^{0.9} 5 \, x^{4} dx = 0.59049 \Rightarrow \boxed{0.59}$$

(4)

等分散の検定を行なうので、2つの正規母集団を $N(\mu_x, \sigma_x^2), N(\mu_y, \sigma_y^2)$ とし、標本を $(x_1, \dots, x_{10}), (y_1, \dots, y_9)$ として不偏分散比を考える。

$$S_x^2 = \frac{1}{10} \sum_{i=1}^{10} (x_i - \overline{x})^2 = 16, \ S_y^2 = \frac{1}{9} \sum_{i=1}^{9} (y_i - \overline{y})^2$$

より標本数 10 の不偏分散は $10 \cdot S_x^2/(10-1) = 160/9$

また、標本数 9 の不偏分散は $9 \cdot S_y^2/(9-1)=(9S_y^2) / 8$

数表が片側有意水準2.5%のF分布で与えられていること,S,を大きくして考えることから不偏分散比の分子は標本数9の方を用いる。

即ち,不偏分散比 $\{9(S_y^2)/8\}/(160/9)=(81\cdot S_y^2)/1280$ が, $F_9^8(0.025)=4.10$ ょり大なるときに,2つの分散は同じでないと言える。

$$S_y^2 \cdot (81/1280) > 4.10$$

$$S_y^2 > 64.790 \Rightarrow 64.8$$

(5)

 $x \ge \theta$ の結合密度関数を $g(x, \theta)$ とおくと,

 $0 \le x \le \theta \;,\; \theta > 0 \; \text{\it cg}(x,\; \theta) = \xi \; (\theta) \cdot f(x \;|\; \theta) = \theta \; \cdot e^{-\theta} / \; \theta = e^{-\theta} \; \text{\it cbs}.$

$$\therefore f(x) = \int_{-\pi}^{\infty} g(x, \theta) d\theta = [-e^{-\theta}]_{x}^{\infty} = [e^{-x}]$$

$$\therefore f(\theta \mid x) = g(x, \theta)/f(x) = e^{-\theta}/e^{-x} = e^{x-\theta}$$

なお,
$$0 < \lim_{\theta \to \infty} \theta e^{-\theta} = \lim_{\theta \to \infty} \frac{\theta}{\theta + \theta^2/2 + \cdots} < \lim_{\theta \to \infty} \frac{1}{1 + \theta/2} = 0$$
を用いた。

2.

一般に平均が未知のとき,真の分散を σ_1^2 ,標本数をn,標本変量分散を S^2 とおくと,仮説 H_0 : $\sigma^2 = \sigma_0^2$ は $(ns^2)/\sigma_0^2 > \chi^2_{n-1}(0.05)$ のとき有意水準 5 %で棄却される。題意は $\sigma_0^2 \le \sigma_1^2/4$ という見当外れの仮説 H_0 は標本数が増えれば棄却できる筈だが,第 2 種の誤りの確率 1 %未満で棄却するには最低いくつの標本を集めれば良いかを求める問題である。

即ち $P\{(ns^2)/\sigma_0^2 > \chi^2_{n-1}(0.05) \mid \sigma^2 = \sigma_1^2\} \ge 0.99$ ——① となるような最小の n を求めればよい。

ここで、 $\sigma_1^2 = K \sigma_0^2 (K \ge 4)$ とすると、

$$P\{(ns^2)/\sigma_1^2 \ge \chi^2_{n-1}(0.99)\} = 0.99 = P\{(ns^2)/\sigma_0^2 \ge K\chi^2_{n-1}(0.99)\}$$

であるから、 $\chi^2_{n-1}(0.05) \le K \chi^2_{n-1}(0.99)$ —②

となるような K, n を求めれば,確率 99 %以上で①が満たされる。ところで②式は K=4 で成立すれば全ての $K \ge 4$ で成り立つから,K=4 で考えれば十分である。

即ち $\chi^2_{n-1}(0.05)$ < 4 $\chi^2_{n-1}(0.99)$ を満たす最小の n を求めればよい。

$$\chi_{18}^{2}(0.05) = 28.9 > 4 \chi_{18}^{2}(0.99) = 4 \times 7.01 = 28.04$$

$$\chi_{19}^{2}(0.05) = 30.1 > 4 \chi_{19}^{2}(0.99) = 4 \times 7.63 = 30.52$$

であるからn-1は最低19である。従って標本数は最低20必要である。

3 . (1)

尤度関数 $L(\mu, \sigma^2)$ は次の式で表わされる。

$$L(\mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(\frac{-1}{2\sigma^2}\sum_{i=1}^{n}(X_i - \mu)^2\right)$$

これを最大とする μ と σ^2 を求めるために対数をとって偏微分して得た次の連立方程式を解く。

$$\left\{ \frac{\partial}{\partial \mu} \log L(\mu, \sigma^2) = \frac{\partial}{\partial \mu} \left\{ -\frac{n}{2} \log 2 \pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \right\} = 0 \right.$$

$$\left\{ \frac{\partial}{\partial (\sigma^2)} \log L(\mu, \sigma^2) = \frac{\partial}{\partial (\sigma^2)} \left\{ -\frac{n}{2} \log 2 \pi \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \right\} = 0 \right.$$

$$\therefore \quad \frac{-1}{\sigma^2} \cdot n \mu + \frac{1}{\sigma^2} \sum_{i=1}^n X_i = 0 \qquad \cdots$$

$$\frac{-n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^{n} (X_i - \mu)^2 = 0$$
(2)

①より

$$\mu = \frac{1}{n} \sum_{i=1}^{n} X_i \equiv \overline{X}$$

③を②に代入して整理すると

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 = 0 \qquad$$

また

$$\frac{\hat{\sigma}^{2}}{\hat{\sigma} \mu^{2}} \log L(\mu, \sigma^{2}) = -n/\sigma^{2} < 0,$$

$$\frac{\hat{\sigma}^{2}}{\hat{\sigma} (\sigma^{2})^{2}} \log L(\mu, \sigma^{2}) = \frac{-n}{2(\sigma^{2})^{2}} + \frac{-1}{2(\sigma^{2})^{3}} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} < 0$$

であるので、③、④で与えられる極値は最大値を示す。従って題意は示された。

(2)

$$S^{2} = \{(X_{1} - \overline{X})^{2} + \dots + (X_{n} - \overline{X})^{2}\}/n$$

$$= \{(X_{1}^{2} - 2X_{1}\overline{X} + \overline{X}^{2}) + \dots + (X_{n}^{2} - 2X_{n}\overline{X} + \overline{X}^{2})\}/n$$

$$= (X_{1}^{2} + \dots + X_{n}^{2})/n - \overline{X}^{2}$$

であるから

$$ES^{2} = (EX_{1}^{2} + \dots + EX_{n}^{2})/n - E\overline{X}^{2}$$

ところで

 $(:EX_i = \mu$ だから $(EX_i^2 - \mu^2) = \sigma^2)$

従って題意は示された。

4.

尤度関数
$$L(x_1, \dots, x_n; \mu, \sigma^2) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left(\frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2\right)$$

の μ , σ^2 の最尤推定量は本年問題 3(i)より $\mu=\overline{x}$, $\sigma^2=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2$ であるから

$$\max_{\Omega} L(x_1, \dots, x_n; \mu, \sigma^2) = \frac{\exp(-n/2)}{(2\pi)^{n/2}} \left[\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \right]^{-n/2}$$

また、 $\mu = \mu_0$ のときの σ^2 の最尤推定量は $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$ であるから

$$\max_{H_0} L(x_1, \dots, x_n; \mu, \sigma^2) = \frac{\exp(-n/2)}{(2\pi)^{n/2}} \left[\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_0)^2 \right]^{-n/2}$$

従って、 尤度比入は

$$\lambda = \frac{\max L}{\max L} = \left[\{ \sum_{i=1}^{n} (x_i - \mu_0)^2 \} / \{ \sum_{i=1}^{n} (x_i - \overline{x})^2 \} \right]^{-n/2}$$

と表わせるから、 $P(\lambda \le \lambda_0 \mid H_o) \le \varepsilon$ となる λ_0 に対し、標本値による尤度比 λ が $\lambda \le \lambda_0$ を満たせば H_o は棄却される。

 $\lambda \le \lambda_0 \Leftrightarrow \lambda^{n/2} \le \lambda_0^{n/2} \Leftrightarrow \lambda_0^{-2/n} \le \lambda^{-2/n}$ であるから $C = \lambda_0^{-2/n}$ とおくと,棄却域 $\lambda \le \lambda_0$ は、

棄却域
$$\left\{\sum_{i=1}^{n}(x_i-\mu_0)^2\right\}/\left\{\sum_{i=1}^{n}(x_i-\overline{x})^2\right\} \ge C$$
 ①

と同値である。

①式の左辺の分子は
$$\sum_{i=1}^{n} (x_i - \mu_0)^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 + n(\overline{x} - \mu_0)^2$$
 と変形できるから

①式は

$$n(\bar{x} - \mu_0)^2 / \left\{ \sum_{i=1}^n (x_i - \bar{x})^2 \right\} \ge C - 1$$

と変形できる。従って更に次のように変形できる。

棄却域
$$n(x-\mu_0)^2 \cdot (n-1) / \left\{ \sum_{i=1}^n (x_i - x_i)^2 \right\} \ge (C-1) \cdot (n-1)$$
 ②

ここで $U=\{(\overline{x}-\mu_0)\sqrt{n}\}/\sigma$, $V^2=\sum_{i=1}^n(X_i-\overline{X})^2/\sigma^2$ とおくと, H_0 の下で \overline{X} の平均は μ_0 . 分散は σ^2/n である。よってUはN(0,1)に従う。

また,一般に V^2 は自由度 n-1の χ^2 分布に従い,X(従って U) と互いに独立である。

$$t=U\sqrt{n-1}/\sqrt{V}$$
 とおくと,

$$t = \left\{ \sqrt{n} \left(\overline{X} - \mu_0 \right) \sqrt{n-1} \right\} / \left[\sum_{i=1}^{n} (X_i - \overline{X})^2 \right]^{1/2} - 3$$

となり, t は自由度 n-1 のステューデントの t 分布に従う。

②式の左辺は③式の t を 2 乗したものだから②式の棄却域は

棄却域
$$t^2 \ge (C-1) \cdot (n-1)$$

と同値になる。

従って、t分布により

$$P(\mid t\mid \geq t_0) = \varepsilon \text{ or } P(t \geq t_0) = \frac{\varepsilon}{2}$$

となる to を定めておけば棄却域は | t | ≥to で与えられ, t 検定が導かれた。