数学(問題)

[問題1から問題3を通じて必要であれば(付表)に記載された数値を用いなさい。]

問題1.次の(1)~(12)の各問について、空欄に当てはまる最も適切なものをそれぞれの選択肢 の中から1つ選び、解答用紙の所定の欄にマークしなさい。なお、同じ選択肢を複数回選択してもよ ll. (各5点)

(1) 正 20 面体の各面に $1 \sim 6$ までの数字のうちの1つを書いてサイコロを作った。その内訳は、1が1個、2が2個、3が3個、4が4個、5が5個、6が5個であった。このサイコロを2回投げたとき、 1回目と2回目に出た数字の和が3で割り切れない確率は である。なお、このサイコロ の各面の出る確率は等しいものとする。

(A)
$$\frac{11}{16}$$

(B)
$$\frac{13}{20}$$

(c)
$$\frac{16}{25}$$

(A)
$$\frac{11}{16}$$
 (B) $\frac{13}{20}$ (C) $\frac{16}{25}$ (D) $\frac{27}{40}$

(E)
$$\frac{33}{50}$$

(F)
$$\frac{51}{80}$$

(G)
$$\frac{133}{200}$$

(E)
$$\frac{33}{50}$$
 (F) $\frac{51}{80}$ (G) $\frac{133}{200}$ (H) $\frac{249}{400}$

(2)確率変数 X_1 , X_2 の結合確率密度関数が、

 $f_{X_1,X_2} \big(x_1 \, , x_2 \big) = \begin{cases} e^{-\left(x_1 + x_2 \right)} & \left(x_1 > 0, x_2 > 0 \right) \\ 0 & \left(その他 \right) \end{cases}$ で与えられるとき、 $U = X_1 + X_2$ の確率密度関数は

$$f_{U}(u) = \begin{cases} \boxed{\qquad} & (u > 0) \\ 0 & (u \le 0) \end{cases}$$

である。

(B)
$$\frac{1}{2}e^{-\frac{u}{2}}$$

(C)
$$4ue^{-2u}$$

(A)
$$ue^{-u}$$
 (B) $\frac{1}{2}e^{-\frac{u}{2}}$ (C) $4ue^{-2u}$ (D) $\frac{1}{4}ue^{-\frac{u}{2}}$ (E) e^{-u} (F) $2e^{-2u}$ (G) $4u^2e^{-2u}$ (H) $\frac{1}{2}u^2e^{-u}$

(E)
$$e^{-u}$$

(**F**)
$$2e^{-2u}$$

(G)
$$4u^2e^{-2u}$$

(H)
$$\frac{1}{2}u^{2}e^{-u}$$

(3)確率変数 X,Y が互いに独立で、ともに標準正規分布 N (0,1) に従うとき、確率ベクトル $\left(X\cos\frac{\pi}{6} - Y\sin\frac{\pi}{6}, X\sin\frac{\pi}{6} + Y\cos\frac{\pi}{6}\right)$ の積率母関数 $\psi\left(\theta_1,\theta_2\right)$ は である。

(A)
$$\exp \left[\theta_1^2 + \theta_2^2\right]$$

(B)
$$\exp \left[\theta_1^2 - \theta_2^2\right]$$

(C)
$$\exp \left[\frac{1}{2}\left(\theta_1^2+\theta_2^2\right)\right]$$

(D)
$$\exp \left[\frac{1}{2} (\theta_1^2 - \theta_2^2) \right]$$

(E)
$$\exp \left[\frac{1 + \sqrt{3}}{2} (\theta_1^2 + \theta_2^2) \right]$$

(F)
$$\exp \left[\frac{1 + \sqrt{3}}{2} (\theta_1^2 - \theta_2^2) \right]$$

(G)
$$\exp \left[\frac{1 + \sqrt{3}}{4} (\theta_1^2 + \theta_2^2) \right]$$

(H)
$$\exp \left[\frac{1 + \sqrt{3}}{4} (\theta_1^2 - \theta_2^2) \right]$$

(4)ある細菌の寿命 X (X>0)は確率変数であり、その分布はこの細菌が取り込んだ有害物質の量 A (A>0)に依存し、その量が a であるという条件の下で、X は平均 $\frac{1}{a}$ の指数分布に従うものとする。また、この取り込んだ有害物質の量 A も確率変数であり、その分布は平均1 の指数分布に従うものとする。

このとき、確率変数 X を固定した条件付期待値 $E(A \mid X = x)$ を以下のとおり求める。

まず、条件付確率密度関数 $f_{X|A}(x|a)$ は平均 $\frac{1}{a}$ の指数分布に従い、確率変数 A は平均1 の指数分布に従うことから、 X 、 A の結合確率密度関数は

$$f_{x,A}(x,a) =$$
 $\times \exp[]$ $(x>0, a>0)$

である。

次に、 $f_{X,A}(x,a)$ をaについて積分することでXの確率密度関数を求めることができ、これより、Xを固定したAの条件付確率密度関数は

$$f_{A|X}(a|x) =$$
 $\times \exp[-$] ($a > 0$)

であることがわかる。

したがって、求める条件付期待値は

$$E(A \mid X = x) =$$

である。

(A)
$$a$$
 (B) ax (C) $a(x+1)$

(E)
$$\frac{1}{a}$$
 (F) $\frac{x}{a}$ (G) $\frac{x+1}{a}$

(I)
$$\frac{1}{x}$$
 (K) $\frac{1}{x+1}$ (L) $\frac{1}{(x+1)^2}$

(M)
$$\frac{2}{x}$$
 (N) $\frac{2}{x^2}$ (O) $\frac{2}{(x+1)^2}$

(5)確率変数 X の確率密度関数が、

$$f(x;\theta) = \begin{cases} \frac{2x}{\theta^2} & (0 < x < \theta) \\ 0 & (その他) \end{cases}$$

である分布に従う母集団があるとする。この母集団から n (n>1) 個の標本を無作為に抽出することにより、以下の 2 通りの方法で母数 θ を推定する。

- ・hetaの不偏推定量を標本変量平均 \overline{X} の実数倍 $a\overline{X}$ (aは正の実数)とする。
- ・ $heta^2$ の不偏推定量を標本変量不偏分散 V^2 の実数倍 bV^2 (b は正の実数)とする。

このとき、a に最も近い数値は であり、b に最も近い数値は である。 なお、 X_i ($i=1,2,\Lambda$,n) を標本変量、 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ 、 $V^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X})^2$ とする。

- (A) 1 (B) $\frac{3}{2}$ (C) 2 (D) $\frac{5}{2}$ (E) 3
- (F) 12 (G) 14 (H) 16 (I) 18 (J) 20
- (6) ある都市の有権者における現職市長の支持率を予想するために、この都市の有権者から140人の 男性と40人の女性をそれぞれ無作為に抽出して調査したところ、男性では72人が、女性では25人 が現職市長を支持すると回答した。

この都市の有権者における男性と女性の人口比が3:2であるとして、有権者における現職市長の支持率を近似法を用いて区間推定するとき、信頼係数を95%とした場合の信頼区間の下限に最も近い数値は であり、上限に最も近い数値は である。なお、男性の支持率と女性の支持率は独立であるとする。

- (A) 0.4441 (B) 0.4592 (C) 0.4661 (D) 0.4807 (E) 0.4932
- (F) 0.6048 (G) 0.6117 (H) 0.6239 (I) 0.6364 (J) 0.6730

(7)ある箱に赤球と黒球が合計で20個入っており、	その内訳は次のいずれかであることがわかって
いる。	
・赤球が15個、黒球が5個である	
・赤球が5個、黒球が15個である	

いま、帰無仮説を「赤球が15個、黒球が5個である」として、この箱から復元抽出によって5個の球を取り出して帰無仮説を検定する。5個の球の中に1個でも黒球が入っていれば帰無仮説を棄却することとすると、第1種の誤りのおこる確率に最も近い数値は であり、第2種の誤りのおこる確率に最も近い数値は である。

(A) 0.0010	(B) 0.0625	(C) 0.1937	(D) 0.2373	(E) 0.3955

(F)
$$0.6836$$
 (G) 0.7627 (H) 0.8063 (I) 0.9854 (J) 0.9990

(8)通常のサイコロ(正6面体の各面に $1 \sim 6$ までの目がふられているサイコロ)を90回投げたところ、次の表のような結果を得た。

目の数	1	2	3	4	5	6
出現回数	9	18	11	22	X	30 - x

このサイコロについて、帰無仮説を「それぞれの目の出る確率が等しい」として、有意水準5%で検定を行った結果、帰無仮説が採択された。このとき、5の目の出た回数xの取りうる値のうち、最小値に最も近い数値は である。

(A)8	(B) 9	(C) 10	(D) 11
(E) 12	(F) 13	(G)14	(H) 15

(9)下表のデータに対して $y=\alpha+\beta\cdot x$ というモデルを考え、最小二乗法によって係数 α,β を推定 するとき、このモデルの決定係数に最も近い数値は である。

х	1.6	1.7	3.4	5.3
у	2.4	4.8	15.2	15.8

(A) 0.0955

(B) 0.1818

(C) 0.4602

(D) 0.6694

(E) 0.8182

(F) 0.9045

(G) 0.9342

(H) 0.9458

(10) AR(2)モデル	$Y_t=2.0+0.6Y_{t-1}+0.1Y_{t-2}+\mathcal{E}_t$ ($E(\mathcal{E}_t)=0,V(\mathcal{E}_t)=0.64$) に対し、	$\left\{ Y_{_{t}} ight\}$ の分散 $\gamma_{_{0}}$
に最も近い数値は	であり、時差 2 の自己共分散 γ_2 に最も近い数値は	である。

(A) 0.50

(B) 0.58

(C) 0.67

(D) 0.73

(E) 0.78

(F) 0.93

(G) 1.07

(H) 1.16

(I) 1.31

(J) 1.45

(1	1)) ある会社の従業員の出勤す	「る確率について調べたところ、	すべての従業員について
-----	----	----------------	-----------------	-------------

- ・ ある営業日に出勤しており、その前営業日も出勤した人が、翌営業日に出勤する確率は0.99
- ・ ある営業日に出勤しているが、その前営業日は欠勤した人が、翌営業日に出勤する確率は0.90
- ・ ある営業日は欠勤しているが、その前営業日は出勤した人が、翌営業日に出勤する確率は0.75
- ・ ある営業日は欠勤しており、その前営業日も欠勤した人が、翌営業日に出勤する確率は0.65 であった。上記の確率が今後変化しないとすると、十分な時間が経過した定常状態において、この 会社に出勤している従業員の割合に最も近い数値はである。

(A) 0.9710 (B) 0.9742 (C) 0.9763

(D) 0.9777

(E) 0.9834

(F) 0.9850

(G) 0.9871

(H) 0.9891

- (12)株価の変動を以下のとおりシミュレートした。
 - 1.時間の単位はシミュレーションのステップごとに1とする。
 - 2. ある時点t ($t \ge 0$) における株価を S_t とおくと、 S_{t+1} は次式で表される。

 $S_{t+1} = S_t \cdot \exp(\mu + \sigma \cdot Z_{t+1})$

ここで、 $Z_{,,,}$ は標準正規分布 $N\left(0,1\right)$ に従う確率変数である。

また、 $\mu = 0.01$ 、 $\sigma^2 = 0.0004$ とする。

- 3.株価の変動は、分布の逆関数法によるものとする。
- 4. t=0 における株価は10,000 とする。
- 5.[0,1] 区間上の一様分布の確率変数の実現値が、0.1587,0.9332の順であったとする。

シミュレーションの結果、t=1における株価がF、t=2における株価がGであった。

このとき、G-F に最も近い数値は である。

(A) 299

(B) 302

(C) 304

(D) 311

(E) 400

(F) 404

(G) 412

(H) 513

問題 2 . 表の出る確率が p (0)、裏の出る確率が <math>q = 1 - p であるコインを使って駒を動かす ゲームを行う。駒の位置は 0 以上の整数で表し、駒の位置は 0 からスタートするものとする。また、このコインを t 回投げた後の駒の位置を表す確率変数を X_t とする。このとき、次の(1)(2)の各 間について、空欄に当てはまる最も適切なものをそれぞれの選択肢の中から 1 つ選び、解答用紙の所 定の欄にマークしなさい。ただし、 と および と の解答はそれぞれ順不同とする。なお、同じ 選択肢を複数回選択してもよい。

(1)【ルール1】に従いゲームを行う。

【ルール1】:

コインを1回投げて、表が出た場合は駒の位置を1つ進め、裏が出た場合は駒の位置を0に戻す。

まず、 $X_t=0$ となる場合を考える。 $X_t=0$ はコインを t 回投げた後、駒の位置が0 であることを意味するので、 $X_t=0$ となる確率は、t-1回目までのコインの表・裏の出方にかかわらず t 回目に裏が出る確率と考えられるため、

$$P(X_t = 0) =$$

となる。

次に、 $X_t=t$ となる場合を考える。 $X_t=t$ はコインを t 回投げた後、駒の位置が t であることを意味するので、 $X_t=t$ となる確率は、

$$P(X_t = t) =$$

となる。

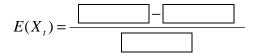
以上の結果を用いて、 $X_t = k (1 \le k \le t-1)$ となる場合を考える。

コインを t 回投げた後、駒の位置が k であるのは、 t-k 回投げた後に駒の位置が 0 であり、かつ、そこから k 回連続で表が出る場合と考えられることから、既に得た結果を利用して、 $X_t=k$ となる確率は、

$$P(X_t = k) =$$

となることがわかる。

したがって、これらの確率を用いて X_t の期待値 $E(X_t)$ を計算すると、



となる。

(2)【ルール2】に従いゲームを行う。

【ルール2】:

コインを投げて、2回連続で裏が出た場合は駒の位置を0に戻す。それ以外の場合はコインを1回投げる毎に駒の位置を1つ進める。

なお、駒の位置を0に戻した場合、裏が2回連続で出たかどうかの判定はそこから新たに行うものとする。すなわち、裏が2回連続で出て駒の位置を0に戻した後、さらに続けて裏が出た場合は駒の位置を1つ進めることとする。

 $P(X_t = k)$ $(0 \le k \le t)$ を以下の手順で求める。

)
$$t = 0$$
 のとき、 $P(X_0 = 0) =$

) *t* ≥ 2 のとき、

まず、 $X_t=0$ となる場合を考える。 $X_t=0$ となるのは、コインの表が一度も出ずにt回目まで連続して裏が偶数回出る場合またはコインの表が出た後t回目まで連続して裏が偶数回出る場合であるから、

$$t$$
 が偶数のとき:
$$P(X_2=0)=$$
 ($t=2$)
$$P(X_t=0)=$$
 + $\sum_{t=1}^{t-2}$ () ($t\geq 4$)

$$t$$
が奇数のとき:
$$P(X_t=0) = \sum_{m=1}^{\frac{t-1}{2}} \left(\begin{array}{c} \end{array} \right)$$

となる。

次に、 $X_t = t$ となる場合を考える。 t 回目のコインの出方が表である場合と裏である場合を考慮すると、 $P(X_t = t)$ は漸化式を用いて

$$P(X_{t} = t) =$$
 $\times P(X_{t-1} = t - 1) +$ $\times P(X_{t-2} = t - 2)$

と表される。

となる。

以上の結果を用いて、 $X_t = k$ となる確率 $P(X_t = k)$ $(1 \le k \le t - 1)$ は、(1) と同様の考え方で 導出することができる。

の選択肢]

(E)
$$p^2$$

(G)
$$p^{t-1}$$

(H)
$$p^t$$

(I)
$$p^{t+1}$$

(
$$\mathsf{J}$$
) $q^{^{t-1}}$

(K)
$$q^t$$

(L)
$$q^{t+1}$$

(M)
$$(t-1)p^{t}$$
 (N) tp^{t+1}

(N)
$$tp^{t+1}$$

(O)
$$(t-1)q^t$$

(P)
$$tq^{t+1}$$

[の選択肢]

(A)
$$p^kq$$

(B)
$$(t-k)p^kq$$

(C)
$$kp^kq$$

(B)
$$(t-k)p^kq$$
 (C) kp^kq (D) $(k+1)p^kq$

(E)
$$p^k q^{t-k}$$

(F)
$$(t-k)p^kq^{t-k}$$

(E)
$$p^k q^{t-k}$$
 (F) $(t-k)p^k q^{t-k}$ (G) $\binom{t}{k}p^k q^{t-k}$

(H)
$$(t-k)!p^kq^{t-k}$$

[、、、の選択肢]

(**E**)
$$p^2$$

(F)
$$q^2$$

(I)
$$1-p^2$$

$$(1)1-a^2$$

(I)
$$1-p^2$$
 (J) $1-q^2$ (K) $1-pq$

(L)
$$1-p^2-q^2$$

[の選択肢]

(A) mpq^2

- **(B)** mpq^{2m}
- (C) $(2m-1)pq^2$

- (D) $(2m-1)pq^{2m}$
- (E) $(t-2m)pq^2$ (F) $(t-2m)pq^{t-2m+1}$
- (G) pq^{2m}
- (H) pq^{t-2m+1}

[、、、、の選択肢]

- (A) t
- (B) (t-1) (C) α
- (D) β
- (E) $(\beta + \alpha)$ (F) $(\beta \alpha)$ (G) $(1-\alpha)$
- (H) $(1-\beta)$

- (I) $(1-\alpha-\beta)$ (J) $\alpha\beta$
- (K) $lpha^{\scriptscriptstyle t-1}$
- (L) $oldsymbol{eta}^{t-1}$

- (M) α^t
- (N) $oldsymbol{eta}^{t}$
- (O) $lpha^{t+1}$
- (P) $oldsymbol{eta}^{t+1}$

問題3.次の文章は信頼区間の定め方について記述したものである。次の(1)(2)の各問について、 空欄に当てはまる最も適切なものをそれぞれの選択肢の中から1つ選び、解答用紙の所定の欄にマー クしなさい。なお、同じ選択肢を複数回選択してもよい。 (20点)

信頼区間の定め方には次の方法がある。

分布 $f(x;\theta)$ をもつ母集団 Π からの標本 (x_1,x_2,Λ_1,x_n) により母数 θ を区間推定するための方法として次のようなものがある。

- 1.標本変量 (X_1,X_2,Λ,X_n) と母数 θ を用いて、適当な統計量 $T(X_1,X_2,\Lambda,X_n;\theta)$ を作る。このとき、 $T(X_1,X_2,\Lambda,X_n;\theta)$ の分布は θ に無関係であるように留意する。
- 2.この $T(X_1,X_2,\Lambda_1,X_n;\theta)$ を用いて、信頼係数 α のもとで、 $P\big(\theta'_L < T(X_1,X_2,\Lambda_1,X_n;\theta) < \theta'_U\big) = \alpha \qquad \cdot \cdot \cdot \cdot \text{(i)}$ となるような θ'_L,θ'_U を定める。 $T(X_1,X_2,\Lambda_1,X_n;\theta)$ の分布は母数 θ に無関係であるから、この2つの値は θ に無関係になっている。
- 3.(i)式の括弧の中を θ について解き、

$$P(\hat{\theta}_L(X_1, X_2, \Lambda, X_n) < \theta < \hat{\theta}_U(X_1, X_2, \Lambda, X_n)) = \alpha$$

とできるなら、

推定量 $\hat{\theta}_L(X_1,X_2,\Lambda_1,X_n)$ の実現値 $\hat{\theta}_L(x_1,x_2,\Lambda_1,x_n)$ および推定量 $\hat{\theta}_U(X_1,X_2,\Lambda_1,X_n)$ の実現値 $\hat{\theta}_U(x_1,x_2,\Lambda_1,x_n)$ は、それぞれ母数 θ の信頼下限および信頼上限である。

これを踏まえ、次の区間推定を考える。

(1)正規母集団 $N(\mu,\sigma^2)$ の母平均 μ を区間推定する方法を導く。

ア . 母分散 σ^2 が既知のとき

標本変量平均 $\overline{X}=rac{1}{n}\sum_{i=1}^{n}X_{i}$ と母平均 μ を用いて適当な統計量 $U_{1}=rac{\overline{X}-\mu}{A}$ を作る。

$$A = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)^{\frac{1}{2}}$$
とおけば、 U_1 の分布は標準正規分布 $N(0,1)$ に従い、かつ母平均 μ

とは無関係となる。

ここで、信頼係数を $\alpha (=1-\varepsilon)$ 、 $u_1(\frac{\varepsilon}{2})$ を標準正規分布 N(0,1) の上側 $\frac{\varepsilon}{2}$ 点とすれば、

$$P\left(-u_1(\frac{\varepsilon}{2}) < U_1 = \frac{\overline{X} - \mu}{A} < u_1(\frac{\varepsilon}{2})\right) = \alpha$$

となる。これを μ について解くと、

$$P\left(\overline{X} - u_1(\frac{\varepsilon}{2}) \cdot A < \mu < \overline{X} + u_1(\frac{\varepsilon}{2}) \cdot A\right) = \alpha$$

となる。したがって、母平均 $\,\mu\,$ の信頼下限 $\,\hat{\mu}_{_{1L}}$ および信頼上限 $\,\hat{\mu}_{_{1U}}$ はそれぞれ

$$\hat{\mu}_{_{1L}} = \overline{x} - u_{_1}(\frac{\varepsilon}{2}) \cdot A \,, \quad \hat{\mu}_{_{1U}} = \overline{x} + u_{_1}(\frac{\varepsilon}{2}) \cdot A$$

となる。ただし、 \bar{x} は \bar{X} の実現値である。

イ. 母分散 σ^2 が未知のとき

 σ^2 が未知であるから、 σ^2 の代わりに標本変量不偏分散 $V^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$ を用いて新しい統計量 $U_2=\frac{\overline{X}-\mu}{B}$ を作る。

 $B = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)^{\frac{1}{2}}$ とおけば、 U_2 の分布は母平均 μ および母分散 σ^2 とは無関係となる。

ことができる。 Z_1 は に従うことから、 U_2 の分布は に従う。

ここで、信頼係数を $\alpha(=1-\varepsilon)$ 、 $u_2(\frac{\varepsilon}{2})$ を の上側 $\frac{\varepsilon}{2}$ 点とすれば、(1) ア . と同様にして、母平均 μ の信頼下限 $\hat{\mu}_{2L}$ および信頼上限 $\hat{\mu}_{2U}$ はそれぞれ

$$\hat{\mu}_{2L} = \overline{x} - u_2(\frac{\varepsilon}{2}) \times \frac{v}{\left(\boxed{}\right)^{\frac{1}{2}}} \ , \ \ \hat{\mu}_{2U} = \overline{x} + u_2(\frac{\varepsilon}{2}) \times \frac{v}{\left(\boxed{}\right)^{\frac{1}{2}}}$$

となる。ただし、 \bar{x}, v はそれぞれ \overline{X}, V の実現値である。

- (2)2つの正規母集団 $N(\mu_x,\sigma_x^2)$ および $N(\mu_y,\sigma_y^2)$ の母平均の差 $\delta=\mu_x-\mu_y$ を区間推定する方法を導く。
 - ア . 母分散 σ_x^2, σ_y^2 が既知のとき

標本変量平均の差 \overline{X} $-\overline{Y} = \frac{1}{n_x} \sum_{i=1}^{n_x} X_i - \frac{1}{n_y} \sum_{i=1}^{n_y} Y_i$ と母平均の差 δ を用いて適当な統計量

$$U_{\scriptscriptstyle 3}=rac{\overline{X}-\overline{Y}-\delta}{C}$$
を作る。

$$C = \left(\begin{array}{c} \hline \\ \hline \end{array} \right)^{\frac{1}{2}}$$
とおけば、 U_3 の分布は標準正規分布 $N(0,1)$ に従い、かつ母平均の差

 δ とは無関係となる。

以下、(1) ア . と同様にして、母平均の差 δ の信頼下限および信頼上限をそれぞれ求めることができる。

イ.<u>母分散 σ_x^2, σ_y^2 が未知のとき(ただし、</u> $\sigma_x^2 = \sigma_y^2 = \sigma^2$ であることが判明している)

 σ_x^2, σ_y^2 が未知であるから、 σ_x^2, σ_y^2 の代わりに 2 つの標本変量分散 $S_x^2 = \frac{1}{n_x} \sum_{i=1}^{n_x} (X_i - \overline{X})^2$ 、

$$S_y^2 = rac{1}{n_y} \sum_{i=1}^{n_y} (Y_i - \overline{Y})^2$$
 を用いて新しい統計量 $U_4 = rac{\overline{X} - \overline{Y} - \delta}{D}$ を作る。 $\sigma_x^2 = \sigma_y^2$ が成り立つと

きに、

 U_4 の分布は に従い、かつ母平均の差 δ および母分散 σ_x^2,σ_y^2 とは無関係となる。 以下、(1) イ.と同様にして、母平均の差 δ の信頼下限および信頼上限をそれぞれ求めることができる。

(A)
$$\sigma^2$$

(B)
$$n\sigma^2$$

(A)
$$\sigma^2$$
 (B) $n\sigma^2$ (C) $(n-1)\sigma^2$

(D)
$$\sigma$$

(E)
$$\sqrt{n} \sigma$$

(E)
$$\sqrt{n} \sigma$$
 (F) $\sqrt{n-1} \sigma$ (G) n

(I)
$$V^2$$

$$(J) nV^2$$

(I)
$$V^2$$
 (J) nV^2 (K) $(n-1)V^2$

(L)
$$V$$

(M)
$$\sqrt{n} V$$

(M)
$$\sqrt{n} V$$
 (N) $\sqrt{n-1} V$ (O) \sqrt{n}

(O)
$$\sqrt{n}$$

(P)
$$\sqrt{n-1}$$

[の選択肢]

(A)
$$nZ_1$$

(B)
$$(n-1)Z_1$$

(C)
$$\frac{Z_1}{n}$$

(A)
$$nZ_1$$
 (B) $(n-1)Z_1$ (C) $\frac{Z_1}{n}$ (D) $\frac{Z_1}{n-1}$

(E)
$$nZ_1^2$$

(F)
$$(n-1)Z_1^2$$

(G)
$$\frac{Z_1^2}{n}$$

(E)
$$nZ_1^2$$
 (F) $(n-1)Z_1^2$ (G) $\frac{Z_1^2}{n}$ (H) $\frac{Z_1^2}{n-1}$

[、 の選択肢]

(A)標準正規分布 *N*(0,1)

(B) 平均1の指数分布

(C)自由度 n の t 分布

(D)自由度 n-1のt分布

(E)自由度nの χ^2 分布

(**F**)自由度 *n*−1の χ^2 分布

- (G)自由度(n,n+1)のF分布
- (H)自由度(n-1,n)のF分布

[の選択肢]

(A)
$$\sigma_x^2 + \sigma_y^2$$

(B)
$$\sigma_x^2 - \sigma_y^2$$

(A)
$$\sigma_x^2 + \sigma_y^2$$
 (B) $\sigma_x^2 - \sigma_y^2$ (C) $n_x \sigma_x^2 + n_y \sigma_y^2$

(D)
$$n_x \sigma_x^2 - n_y \sigma_y^2$$

(**E**)
$$n_{v}\sigma_{x}^{2} + n_{x}\sigma_{v}^{2}$$

(D)
$$n_x \sigma_x^2 - n_y \sigma_y^2$$
 (E) $n_y \sigma_x^2 + n_x \sigma_y^2$ (F) $n_y \sigma_x^2 - n_x \sigma_y^2$

(G)
$$(n_x - 1)\sigma_x^2 + (n_y - 1)\sigma_y^2$$
 (H) $(n_y - 1)\sigma_x^2 + (n_x - 1)\sigma_y^2$

(H)
$$(n_y - 1)\sigma_y^2 + (n_y - 1)\sigma_y^2$$

[、 、 、 、 の選択肢]

(A)
$$n_x$$

$$(B) n_y$$

(C)
$$n_x - 1$$

(B)
$$n_y$$
 (C) $n_x - 1$ (D) $n_y - 1$

(E)
$$n_x + n_y$$

(F)
$$n_x + n_y - 1$$

(E)
$$n_x + n_y$$
 (F) $n_x + n_y - 1$ (G) $n_x + n_y - 2$ (H) $n_x n_y$

(H)
$$n_x n_y$$

(I)
$$\frac{1}{n_{x}}$$

$$(J)\frac{1}{n}$$

(K)
$$\frac{1}{n_{-}-1}$$

(I)
$$\frac{1}{n_{v}}$$
 (K) $\frac{1}{n_{v}-1}$ (L) $\frac{1}{n_{v}-1}$

(M)
$$\frac{1}{n_x} + \frac{1}{n_y}$$

(M)
$$\frac{1}{n_x} + \frac{1}{n_y}$$
 (N) $\frac{1}{n_x + n_y - 1}$ (O) $\frac{1}{n_x + n_y - 2}$ (P) $\frac{1}{n_x n_y}$

(0)
$$\frac{1}{n_x + n_y - 2}$$

(P)
$$\frac{1}{n_{x}n_{y}}$$

[の選択肢]

(A)自由度
$$n_x + n_y$$
の t 分布

(B)自由度
$$n_x + n_y - 1$$
の t 分布

(C)自由度
$$n_x + n_y - 2$$
の t 分布

(D)自由度
$$n_x + n_y$$
の χ^2 分布

(E)自由度
$$n_x + n_y - 1$$
の χ^2 分布

(F)自由度
$$n_x + n_y - 2$$
の χ^2 分布

(G)自由度
$$(n_x + n_y - 1, n_x + n_y)$$
の F 分布

(G)自由度
$$(n_x + n_y - 1, n_x + n_y)$$
の F 分布 (H)自由度 $(n_x + n_y - 2, n_x + n_y - 1)$ の F 分布

(付表)

.標準正規分布表

P(x > 0.25) = 0.4013

上側 ε 点 $u(\varepsilon)$ から確率 ε を求める表

上則 ε 只	$u(\varepsilon)$ /) \Box	1年半8年2	水のの衣		\					
$u(\varepsilon)$ ε	* = 0	* = 1	* = 2	* = 3	* = 4	* = 5	* = 6	* = 7	* = 8	* = 9
0.0*	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1*	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2*	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3*	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4*	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5*	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6*	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7*	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8*	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9*	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0*	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1*	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2*	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3*	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4*	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5*	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6*	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7*	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8*	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9*	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0*	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1*	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2*	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3*	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4*	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5*	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6*	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7*	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8*	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9*	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014

P(x > 1.9600) = 0.025

確率 ϵ から上側 ϵ 点 $u(\epsilon)$ を求める表

催举επ	ら上側€	点 u (ε) を	・氷のるむ	₹						
$\varepsilon u(\varepsilon)$	* = 0	* = 1	* = 2	* = 3	* = 4	* = 5	* = 6	* = 7	* = 8	* = 9
0.00*		3.0902	2.8782	2.7478	2.6521	2.5758	2.5121	2.4573	2.4089	2.3656
0.01*	2.3263	2.2904	2.2571	2.2262	2.1973	2.1701	2.1444	2.1201	2.0969	2.0749
0.02*	2.0537	2.0335	2.0141	1.9954	1.9774	1.9600	1.9431	1.9268	1.9110	1.8957
0.03*	1.8808	1.8663	1.8522	1.8384	1.8250	1.8119	1.7991	1.7866	1.7744	1.7624
0.04*	1.7507	1.7392	1.7279	1.7169	1.7060	1.6954	1.6849	1.6747	1.6646	1.6546
0.05*	1.6449	1.6352	1.6258	1.6164	1.6072	1.5982	1.5893	1.5805	1.5718	1.5632
0.06*	1.5548	1.5464	1.5382	1.5301	1.5220	1.5141	1.5063	1.4985	1.4909	1.4833
0.07*	1.4758	1.4684	1.4611	1.4538	1.4466	1.4395	1.4325	1.4255	1.4187	1.4118
0.08*	1.4051	1.3984	1.3917	1.3852	1.3787	1.3722	1.3658	1.3595	1.3532	1.3469
0.09*	1.3408	1.3346	1.3285	1.3225	1.3165	1.3106	1.3047	1.2988	1.2930	1.2873
0.10*	1.2816	1.2759	1.2702	1.2646	1.2591	1.2536	1.2481	1.2426	1.2372	1.2319
0.11*	1.2265	1.2212	1.2160	1.2107	1.2055	1.2004	1.1952	1.1901	1.1850	1.1800
0.12*	1.1750	1.1700	1.1650	1.1601	1.1552	1.1503	1.1455	1.1407	1.1359	1.1311
0.12*	1.1264	1.1217	1.1170	1.1123	1.1077	1.1031	1.0985	1.0939	1.0893	1.0848
0.13	1.0803	1.0758	1.0714	1.0669	1.0625	1.0581	1.0537	1.0494	1.0450	1.0407
0.14	1.0364	1.0738	1.0279	1.0237	1.0023	1.0361	1.0110	1.0069	1.0027	0.9986
0.15	0.9945	0.9904	0.9863	0.9822	0.9782	0.9741	0.9701	0.9661	0.9621	0.9581
0.10*	0.9542	0.9504	0.9463	0.9822	0.9782	0.9741	0.9307	0.9001	0.9021	0.9381
0.17*		0.9302	0.9403	0.9424	0.9383		0.8927	0.9209		
0.18*	0.9154	0.9116				0.8965			0.8853 0.8488	0.8816
	0.8779		0.8705	0.8669	0.8633	0.8596	0.8560	0.8524		0.8452
0.20*	0.8416	0.8381	0.8345	0.8310	0.8274	0.8239	0.8204	0.8169	0.8134	0.8099
0.21*	0.8064	0.8030	0.7995	0.7961	0.7926	0.7892	0.7858	0.7824	0.7790	0.7756
0.22*	0.7722	0.7688	0.7655	0.7621	0.7588	0.7554	0.7521	0.7488	0.7454	0.7421
0.23*	0.7388	0.7356	0.7323	0.7290	0.7257	0.7225	0.7192	0.7160	0.7128	0.7095
0.24*	0.7063	0.7031	0.6999	0.6967	0.6935	0.6903	0.6871	0.6840	0.6808	0.6776
0.25*	0.6745	0.6713	0.6682	0.6651	0.6620	0.6588	0.6557	0.6526	0.6495	0.6464
0.26*	0.6433	0.6403	0.6372	0.6341	0.6311	0.6280	0.6250	0.6219	0.6189	0.6158
0.27*	0.6128	0.6098	0.6068	0.6038	0.6008	0.5978	0.5948	0.5918	0.5888	0.5858
0.28*	0.5828	0.5799	0.5769	0.5740	0.5710	0.5681	0.5651	0.5622	0.5592	0.5563
0.29*	0.5534	0.5505	0.5476	0.5446	0.5417	0.5388	0.5359	0.5330	0.5302	0.5273
0.30*	0.5244	0.5215	0.5187	0.5158	0.5129	0.5101	0.5072	0.5044	0.5015	0.4987
0.31*	0.4959	0.4930	0.4902	0.4874	0.4845	0.4817	0.4789	0.4761	0.4733	0.4705
0.32*	0.4677	0.4649	0.4621	0.4593	0.4565	0.4538	0.4510	0.4482	0.4454	0.4427
0.33*	0.4399	0.4372	0.4344	0.4316	0.4289	0.4261	0.4234	0.4207	0.4179	0.4152
0.34*	0.4125	0.4097	0.4070	0.4043	0.4016	0.3989	0.3961	0.3934	0.3907	0.3880
0.35*	0.3853	0.3826	0.3799	0.3772	0.3745	0.3719	0.3692	0.3665	0.3638	0.3611
0.36*	0.3585	0.3558	0.3531	0.3505	0.3478	0.3451	0.3425	0.3398	0.3372	0.3345
0.37*	0.3319	0.3292	0.3266	0.3239	0.3213	0.3186	0.3160	0.3134	0.3107	0.3081
0.38*	0.3055	0.3029	0.3002	0.2976	0.2950	0.2924	0.2898	0.2871	0.2845	0.2819
0.39*	0.2793	0.2767	0.2741	0.2715	0.2689	0.2663	0.2637	0.2611	0.2585	0.2559
0.40*	0.2533	0.2508	0.2482	0.2456	0.2430	0.2404	0.2378	0.2353	0.2327	0.2301
0.41*	0.2275	0.2250	0.2224	0.2198	0.2173	0.2147	0.2121	0.2096	0.2070	0.2045
0.42*	0.2019	0.1993	0.1968	0.1942	0.1917	0.1891	0.1866	0.1840	0.1815	0.1789
0.43*	0.1764	0.1738	0.1713	0.1687	0.1662	0.1637	0.1611	0.1586	0.1560	0.1535
0.44*	0.1510	0.1484	0.1459	0.1434	0.1408	0.1383	0.1358	0.1332	0.1307	0.1282
0.45*	0.1257	0.1231	0.1206	0.1181	0.1156	0.1130	0.1105	0.1080	0.1055	0.1030
0.46*	0.1004	0.0979	0.0954	0.0929	0.0904	0.0878	0.0853	0.0828	0.0803	0.0778
0.47*	0.0753	0.0728	0.0702	0.0677	0.0652	0.0627	0.0602	0.0577	0.0552	0.0527
0.48*	0.0502	0.0476	0.0451	0.0426	0.0401	0.0376	0.0351	0.0326	0.0301	0.0276
0.49*	0.0251	0.0226	0.0201	0.0175	0.0150	0.0125	0.0100	0.0075	0.0050	0.0025

.自由度arphiの χ^2 分布の上側arepsilon点: $\chi^2_{arphi}(arepsilon)$

φ\ε	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010
1	0.0002	0.0010	0.0039	0.0158	0.4549	2.7055	3.8415	5.0239	6.6349
2	0.0201	0.0506	0.1026	0.2107	1.3863	4.6052	5.9915	7.3778	9.2103
3	0.1148	0.2158	0.3518	0.5844	2.3660	6.2514	7.8147	9.3484	11.3449
4	0.2971	0.4844	0.7107	1.0636	3.3567	7.7794	9.4877	11.1433	13.2767
5	0.5543	0.8312	1.1455	1.6103	4.3515	9.2364	11.0705	12.8325	15.0863
6	0.8721	1.2373	1.6354	2.2041	5.3481	10.6446	12.5916	14.4494	16.8119
7	1.2390	1.6899	2.1673	2.8331	6.3458	12.0170	14.0671	16.0128	18.4753
8	1.6465	2.1797	2.7326	3.4895	7.3441	13.3616	15.5073	17.5345	20.0902
9	2.0879	2.7004	3.3251	4.1682	8.3428	14.6837	16.9190	19.0228	21.6660
10	2.5582	3.2470	3.9403	4.8652	9.3418	15.9872	18.3070	20.4832	23.2093
11	3.0535	3.8157	4.5748	5.5778	10.3410	17.2750	19.6751	21.9200	24.7250
12	3.5706	4.4038	5.2260	6.3038	11.3403	18.5493	21.0261	23.3367	26.2170
13	4.1069	5.0088	5.8919	7.0415	12.3398	19.8119	22.3620	24.7356	27.6882
14	4.6604	5.6287	6.5706	7.7895	13.3393	21.0641	23.6848	26.1189	29.1412
15	5.2293	6.2621	7.2609	8.5468	14.3389	22.3071	24.9958	27.4884	30.5779
16	5.8122	6.9077	7.9616	9.3122	15.3385	23.5418	26.2962	28.8454	31.9999
17	6.4078	7.5642	8.6718	10.0852	16.3382	24.7690	27.5871	30.1910	33.4087
18	7.0149	8.2307	9.3905	10.8649	17.3379	25.9894	28.8693	31.5264	34.8053
19	7.6327	8.9065	10.1170	11.6509	18.3377	27.2036	30.1435	32.8523	36.1909
20	8.2604	9.5908	10.8508	12.4426	19.3374	28.4120	31.4104	34.1696	37.5662
21	8.8972	10.2829	11.5913	13.2396	20.3372	29.6151	32.6706	35.4789	38.9322
22	9.5425	10.9823	12.3380	14.0415	21.3370	30.8133	33.9244	36.7807	40.2894
23	10.1957	11.6886	13.0905	14.8480	22.3369	32.0069	35.1725	38.0756	41.6384
24	10.8564	12.4012	13.8484	15.6587	23.3367	33.1962	36.4150	39.3641	42.9798
25	11.5240	13.1197	14.6114	16.4734	24.3366	34.3816	37.6525	40.6465	44.3141
26	12.1981	13.8439	15.3792	17.2919	25.3365	35.5632	38.8851	41.9232	45.6417
27	12.8785	14.5734	16.1514	18.1139	26.3363	36.7412	40.1133	43.1945	46.9629
28	13.5647	15.3079	16.9279	18.9392	27.3362	37.9159	41.3371	44.4608	48.2782
29	14.2565	16.0471	17.7084	19.7677	28.3361	39.0875	42.5570	45.7223	49.5879
30	14.9535	16.7908	18.4927	20.5992	29.3360	40.2560	43.7730	46.9792	50.8922
31	15.6555	17.5387	19.2806	21.4336	30.3359	41.4217	44.9853	48.2319	52.1914
32	16.3622	18.2908	20.0719	22.2706	31.3359	42.5847	46.1943	49.4804	53.4858
33	17.0735	19.0467	20.8665	23.1102	32.3358	43.7452	47.3999	50.7251	54.7755
34	17.7891	19.8063	21.6643	23.9523	33.3357	44.9032	48.6024	51.9660	56.0609
35	18.5089	20.5694	22.4650	24.7967	34.3356	46.0588	49.8018	53.2033	57.3421
36	19.2327	21.3359	23.2686	25.6433	35.3356	47.2122	50.9985	54.4373	58.6192
37	19.9602	22.1056	24.0749	26.4921	36.3355	48.3634	52.1923	55.6680	59.8925
38	20.6914	22.8785	24.8839	27.3430	37.3355	49.5126	53.3835	56.8955	61.1621
39	21.4262	23.6543	25.6954	28.1958	38.3354	50.6598	54.5722	58.1201	62.4281
40	22.1643	24.4330	26.5093	29.0505	39.3353	51.8051	55.7585	59.3417	63.6907
41	22.9056	25.2145	27.3256	29.9071	40.3353	52.9485	56.9424	60.5606	64.9501
42	23.6501	25.9987	28.1440	30.7654	41.3352	54.0902	58.1240	61.7768	66.2062
43	24.3976	26.7854	28.9647	31.6255	42.3352	55.2302	59.3035	62.9904	67.4593
44	25.1480	27.5746	29.7875	32.4871	43.3352	56.3685	60.4809	64.2015	68.7095
45	25.9013	28.3662	30.6123	33.3504	44.3351	57.5053	61.6562	65.4102	69.9568
46	26.6572	29.1601	31.4390	34.2152	45.3351	58.6405	62.8296	66.6165	71.2014
47	27.4158	29.9562	32.2676	35.0814	46.3350	59.7743	64.0011	67.8206	72.4433
48	28.1770	30.7545	33.0981	35.9491	47.3350	60.9066	65.1708	69.0226	73.6826
49	28.9406	31.5549	33.9303	36.8182	48.3350	62.0375	66.3386	70.2224	74.9195
50	29.7067	32.3574	34.7643	37.6886	49.3349	63.1671	67.5048	71.4202	76.1539

3.1373

2.9782

3.1789

3.0204

. 分母	.分母の自由度 n 、 分子の自由度 m の F 分布の上側 点: $F_n^{m}(arepsilon)$										
ε =	0.100										
$n \setminus m$	1	2	3	4	5	6	7	8	9	10	
2	8.526	9.000	9.162	9.243	9.293	9.326	9.349	9.367	9.381	9.392	
3	5.538	5.462	5.391	5.343	5.309	5.285	5.266	5.252	5.240	5.230	
4	4.545	4.325	4.191	4.107	4.051	4.010	3.979	3.955	3.936	3.920	
5	4.060	3.780	3.619	3.520	3.453	3.405	3.368	3.339	3.316	3.297	
6	3.776	3.463	3.289	3.181	3.108	3.055	3.014	2.983	2.958	2.937	
7	3.589	3.257	3.074	2.961	2.883	2.827	2.785	2.752	2.725	2.703	
8	3.458	3.113	2.924	2.806	2.726	2.668	2.624	2.589	2.561	2.538	
9	3.360	3.006	2.813	2.693	2.611	2.551	2.505	2.469	2.440	2.416	
10	3.285	2.924	2.728	2.605	2.522	2.461	2.414	2.377	2.347	2.323	
ε =	0.050										
$n \setminus m$	1	2	3	4	5	6	7	8	9	10	
2	18.5128	19.0000	19.1643	19.2468	19.2964	19.3295	19.3532	19.3710	19.3848	19.3959	
3	10.1280	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.0410	5.9988	5.9644	
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.0990	4.0600	
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.8660	3.7870	3.7257	3.6767	3.6365	
8	5.3177	4.4590	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	
					1					1	

 $\varepsilon = 0.025$

5.1174

4.9646

4.2565

4.1028

3.8625

3.7083

3.6331

3.4780

9

10

	0.023									
$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	38.5063	39.0000	39.1655	39.2484	39.2982	39.3315	39.3552	39.3730	39.3869	39.3980
3	17.4434	16.0441	15.4392	15.1010	14.8848	14.7347	14.6244	14.5399	14.4731	14.4189
4	12.2179	10.6491	9.9792	9.6045	9.3645	9.1973	9.0741	8.9796	8.9047	8.8439
5	10.0070	8.4336	7.7636	7.3879	7.1464	6.9777	6.8531	6.7572	6.6811	6.6192
6	8.8131	7.2599	6.5988	6.2272	5.9876	5.8198	5.6955	5.5996	5.5234	5.4613
7	8.0727	6.5415	5.8898	5.5226	5.2852	5.1186	4.9949	4.8993	4.8232	4.7611
8	7.5709	6.0595	5.4160	5.0526	4.8173	4.6517	4.5286	4.4333	4.3572	4.2951
9	7.2093	5.7147	5.0781	4.7181	4.4844	4.3197	4.1970	4.1020	4.0260	3.9639
10	6.9367	5.4564	4.8256	4.4683	4.2361	4.0721	3.9498	3.8549	3.7790	3.7168

3.4817

3.3258

3.3738

3.2172

3.2927

3.1355

3.2296

3.0717

 $\varepsilon = 0.010$

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	98.5025	99.0000	99.1662	99.2494	99.2993	99.3326	99.3564	99.3742	99.3881	99.3992
3	34.1162	30.8165	29.4567	28.7099	28.2371	27.9107	27.6717	27.4892	27.3452	27.2287
4	21.1977	18.0000	16.6944	15.9770	15.5219	15.2069	14.9758	14.7989	14.6591	14.5459
5	16.2582	13.2739	12.0600	11.3919	10.9670	10.6723	10.4555	10.2893	10.1578	10.0510
6	13.7450	10.9248	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.9761	7.8741
7	12.2464	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.7188	6.6201
8	11.2586	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.9106	5.8143
9	10.5614	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.3511	5.2565
10	10.0443	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5.0567	4.9424	4.8491

 $\varepsilon = 0.005$

$n \setminus m$	1	2	3	4	5	6	7	8	9	10
2	198.5013	199.0000	199.1664	199.2497	199.2996	199.3330	199.3568	199.3746	199.3885	199.3996
3	55.5520	49.7993	47.4672	46.1946	45.3916	44.8385	44.4341	44.1256	43.8824	43.6858
4	31.3328	26.2843	24.2591	23.1545	22.4564	21.9746	21.6217	21.3520	21.1391	20.9667
5	22.7848	18.3138	16.5298	15.5561	14.9396	14.5133	14.2004	13.9610	13.7716	13.6182
6	18.6350	14.5441	12.9166	12.0275	11.4637	11.0730	10.7859	10.5658	10.3915	10.2500
7	16.2356	12.4040	10.8824	10.0505	9.5221	9.1553	8.8854	8.6781	8.5138	8.3803
8	14.6882	11.0424	9.5965	8.8051	8.3018	7.9520	7.6941	7.4959	7.3386	7.2106
9	13.6136	10.1067	8.7171	7.9559	7.4712	7.1339	6.8849	6.6933	6.5411	6.4172
10	12.8265	9.4270	8.0807	7.3428	6.8724	6.5446	6.3025	6.1159	5.9676	5.8467

. 自由度arphiのt分布の上側arepsilon点: $t_{oldsymbol{arphi}}(arepsilon)$

0.100 0.050 0.025 φ \ ε 1 3.0777 6.313812.70622 1.8856 2.9200 4.3027 3.1824 3 1.6377 2.3534 1.5332 2.7764 4 2.13185 1.4759 2.0150 2.57061.9432 2.4469 6 1.4398 7 1.4149 1.8946 2.3646 8 1.39681.8595 2.3060 9 1.38301.83312.262210 1.3722 1.8125 2.2281 11 1.3634 1.7959 2.2010 1.3562 2.1788 12 1.7823 13 1.35021.7709 2.16042.1448 14 1.3450 1.7613 15 1.3406 1.7531 2.1314 16 1.3368 1.7459 2.1199 17 1.33341.7396 2.1098 18 1.3304 1.7341 2.1009 19 2.0930 1.3277 1.7291 20 1.32531.7247 2.0860 21 1.32321.7207 2.0796 22 1.3212 1.7171 2.0739 23 1.3195 1.7139 2.068724 1.31781.7109 2.063925 1.31631.7081 2.0595

. 自然対数表

x	log X				
1.1	0.0953				
1.2	0.1823				
1.3	0.2624				
1.4	0.3365				
1.5	0.4055				
1.6	0.4700				
1.7	0.5306				
1.8	0.5878				
1.9	0.6419				
2.0	0.6931				
2.5	0.9163				
3.0	1.0986				
3.5	1.2528				
4.0	1.3863				
4.5	1.5041				
5.0	1.6094				
5.5	1.7047				
6.0	1.7918				
6.5	1.8718				
7.0	1.9459				
7.5	2.0149				
8.0	2.0794				
8.5	2.1401				
9.0	2.1972				
9.5	2.2513				
10.0	2.3026				

. 指数関数表

х	exp(x)				
-0.10	0.9048				
-0.09	0.9139				
-0.08	0.9231				
-0.07	0.9324				
-0.06	0.9418				
-0.05	0.9512				
-0.04	0.9608				
-0.03	0.9704				
-0.02	0.9802				
-0.01	0.9900				
0.00	1.0000				
0.01	1.0101				
0.02	1.0202				
0.03	1.0305				
0.04	1.0408				
0.05	1.0513				
0.06	1.0618				
0.07	1.0725				
0.08	1.0833				
0.09	1.0942				
0.10	1.1052				

以上

数学(解答例)

(1)

正 20 面体のサイコロを 2 回投げて、 1 回目と 2 回目に出た数字の和が k となる事象を A_k とする。このとき、 k が 3 で割り切れる事象は A_3 , A_6 , A_9 , A_{12} である。

1回目に出た数字をi、2回目に出た数字をjとし、2回の出た数字を(i,j)で表すと、kが3で割り切れる事象はそれぞれ以下のとおりである。

$$A_3 = \{(1,2), (2,1)\}$$

$$A_6 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$$

$$A_9 = \{(3,6), (4,5), (5,4), (6,3)\}$$

$$A_{12} = \{(6,6)\}$$

それぞれの確率を求めると、

$$P(A_3) = \frac{1}{400} (1 \times 2 + 2 \times 1) = \frac{4}{400}$$

$$P(A_6) = \frac{1}{400} (1 \times 5 + 2 \times 4 + 3 \times 3 + 4 \times 2 + 5 \times 1) = \frac{35}{400}$$

$$P(A_9) = \frac{1}{400} (3 \times 5 + 4 \times 5 + 5 \times 4 + 5 \times 3) = \frac{70}{400}$$

$$P(A_{12}) = \frac{1}{400} (5 \times 5) = \frac{25}{400}$$

である。

1回目と2回目に出た数字の和が3で割り切れる確率を q とすると、 A_3 , A_6 , A_9 , A_{12} は互いに排反な事象であるから、 q は以下のとおり表せる。

$$q = P(A_3 \cup A_6 \cup A_9 \cup A_{12}) = P(A_3) + P(A_6) + P(A_9) + P(A_{12})$$

したがって、1回目と2回目に出た数字の和が3で割り切れない確率pは、

$$p = 1 - q = 1 - \{P(A_3) + P(A_6) + P(A_9) + P(A_{12})\}$$

$$= 1 - \left(\frac{4}{400} + \frac{35}{400} + \frac{70}{400} + \frac{25}{400}\right)$$

$$= \frac{133}{200}$$

である。

よって、解答は (G)

(2)

$$u=x_1+x_2, v=x_2$$
とおいて、これを x_1, x_2 について解けば、
$$x_1=u-v, x_2=v$$

であり、また、

$$\frac{\partial (x_1, x_2)}{\partial (u, v)} = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = 1$$

である。これより、確率変数 $U=X_1+X_2$ 、 $V=X_2$ の結合確率密度関数は、

$$f_{U,V}\left(u,v\right) = f_{X_1,X_2}\left(u-v,v\right) \cdot \left| \frac{\partial \left(x_1,x_2\right)}{\partial \left(u,v\right)} \right| = \begin{cases} e^{-u} & \left(u-v>0,v>0\right) \\ 0 & \left(その他\right) \end{cases}$$

となる。

よって、U の確率密度関数 $f_U(u)$ はu>0に対して、

$$\begin{split} f_U(u) &= \int_{-\infty}^{\infty} f_{U,V}(u,v) dv = \int_0^u e^{-u} dv = \left[v e^{-u}\right]_0^u = u e^{-u} \end{split}$$
 ($u \leq 0$ の場合は $f_U(u) = 0$)

よって、解答は (A)

(3)

確率変数 X, Y の積率母関数 $\varphi(\theta)$ は以下のとおり。

$$\varphi(\theta) = E\left[e^{\theta X}\right]$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}x^2 + \theta x\right] dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(x - \theta)^2 + \frac{1}{2}\theta^2\right] dx$$

$$= \exp\left(\frac{1}{2}\theta^2\right)$$

X,Yは互いに独立であることから、確率ベクトル(X,Y)の積率母関数 $\phi(\theta_1,\theta_2)$ は、

$$\phi(\theta_1, \theta_2) = E\left[e^{\theta_1 X + \theta_2 Y}\right] = E\left[e^{\theta_1 X}\right] E\left[e^{\theta_2 Y}\right] = \phi(\theta_1)\phi(\theta_2) = \exp\left[\frac{1}{2}\left(\theta_1^2 + \theta_2^2\right)\right]$$

次に、確率ベクトル $\left(X\cos\frac{\pi}{6} - Y\sin\frac{\pi}{6}, X\sin\frac{\pi}{6} + Y\cos\frac{\pi}{6}\right)$ の積率母関数 $\psi(\theta_1, \theta_2)$ は、確率ベクトル (X,Y) の積率母関数 $\phi(\theta_1, \theta_2)$ を用いて以下のとおり表せる。

$$\psi(\theta_1, \theta_2) = E \left[\exp\left\{ \theta_1 \left(X \cos \frac{\pi}{6} - Y \sin \frac{\pi}{6} \right) + \theta_2 \left(X \sin \frac{\pi}{6} + Y \cos \frac{\pi}{6} \right) \right\} \right]$$

$$= E \left[\exp\left\{ \left(\theta_1 \cos \frac{\pi}{6} + \theta_2 \sin \frac{\pi}{6} \right) X + \left(-\theta_1 \sin \frac{\pi}{6} + \theta_2 \cos \frac{\pi}{6} \right) Y \right\} \right]$$

$$= \phi \left(\theta_1 \cos \frac{\pi}{6} + \theta_2 \sin \frac{\pi}{6}, -\theta_1 \sin \frac{\pi}{6} + \theta_2 \cos \frac{\pi}{6} \right)$$

これより、

$$\begin{split} \psi\left(\theta_{1},\theta_{2}\right) &= \exp\left[\frac{1}{2}\left\{\left(\theta_{1}\cos\frac{\pi}{6} + \theta_{2}\sin\frac{\pi}{6}\right)^{2} + \left(-\theta_{1}\sin\frac{\pi}{6} + \theta_{2}\cos\frac{\pi}{6}\right)^{2}\right\}\right] \\ &= \exp\left[\frac{1}{2}\left\{\theta_{1}^{2}\left(\sin^{2}\frac{\pi}{6} + \cos^{2}\frac{\pi}{6}\right) + \theta_{2}^{2}\left(\sin^{2}\frac{\pi}{6} + \cos^{2}\frac{\pi}{6}\right)\right\}\right] \\ &= \exp\left[\frac{1}{2}\left(\theta_{1}^{2} + \theta_{2}^{2}\right)\right] \end{split}$$

よって、解答は (C)

(4)

Aの確率密度関数は、平均1の指数分布であるから、 $f_{A}(a)=e^{-a}$ と表せる。また、X の A に対する条件付確率密度関数を考えると、これは平均 $\frac{1}{a}$ の指数分布に従うことから、

$$f_{X|A}(x \mid a) = ae^{-ax}$$
 と表せる。

$$f_{X|A}(x\mid a)=rac{f_{X,A}(x,a)}{f_A(a)}$$
であるので、確率変数 X,A の結合確率密度関数は、

$$f_{X,A}(x,a) = f_{X|A}(x \mid a) f_A(a)$$

$$= ae^{-ax} \cdot e^{-a}$$

$$= ae^{-a(x+1)} \quad (= a \times \exp[-a(x+1)])$$

である(ただし、x>0,a>0)

Xの確率密度関数 $f_{\scriptscriptstyle X}(x)$ は、 $f_{\scriptscriptstyle X,A}(x,a)$ を a について積分することで求めることができる。

$$f_X(x) = \int f_{X,A}(x,a)da$$

$$= \int_0^\infty ae^{-a(x+1)}da$$

$$= \left[-\frac{1}{x+1}ae^{-a(x+1)} \right]_0^\infty + \frac{1}{x+1} \int_0^\infty e^{-a(x+1)}da$$

$$= 0 + \frac{1}{x+1} \left[-\frac{1}{x+1}e^{-a(x+1)} \right]_0^\infty$$

$$= \frac{1}{(x+1)^2}$$

これより、Xを固定したAの条件付確率密度関数は、

$$f_{A|X}(a \mid x) = \frac{f_{X,A}(x,a)}{f_X(x)}$$
$$= a(x+1)^2 e^{-a(x+1)} \quad \left(= a(x+1)^2 \times \exp[-a(x+1)]\right)$$

である(ただし、a>0)

したがって、求める条件付期待値は、

$$E(A \mid X) = \int_0^\infty a \times f_{A\mid X}(a \mid x) da$$

$$= \int_0^\infty a \times a(x+1)^2 e^{-a(x+1)} da$$

$$= (x+1)^2 \int_0^\infty a^2 e^{-a(x+1)} da$$

$$= (x+1)^2 \left[-\frac{a^2}{x+1} e^{-a(x+1)} \right]_0^\infty + (x+1) \int_0^\infty 2a e^{-a(x+1)} da$$

$$= 0 + (x+1) \left[-\frac{2a}{x+1} e^{-a(x+1)} \right]_0^\infty + \int_0^\infty 2e^{-a(x+1)} da$$

$$= 0 + \left[-\frac{2}{x+1} e^{-a(x+1)} \right]_0^\infty$$

$$= \frac{2}{x+1}$$

よって、解答は (A) (C) (D) (C) (O)

(5)

標本変量平均 \overline{X} の実数倍 $a\overline{X}$ が θ の不偏推定量となることから、

$$E(a\overline{X}) = aE(\overline{X}) = \theta$$

が成り立つ。

ここで、確率変数Xの平均 μ は、

$$\mu = E(X) = \int_0^\theta x \cdot \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} \cdot \frac{\theta^3}{3} = \frac{2}{3}\theta$$

であり、 \overline{X} の期待値は、

$$E(\overline{X}) = \mu = \frac{2}{3}\theta$$

である。したがって、

$$aE(\overline{X}) = a \cdot \frac{2}{3}\theta = \theta$$

を解いて、

$$a = \frac{3}{2}$$

である。

同様に、標本変量不偏分散 V^2 の実数倍 bV^2 が θ^2 の不偏推定量となることから、 $E(bV^2)=bE(V^2)=\theta^2$ が成り立つ。

ここで、 X^2 の期待値は、

$$E(X^2) = \int_0^\theta x^2 \cdot \frac{2x}{\theta^2} dx = \frac{2}{\theta^2} \cdot \frac{\theta^4}{4} = \frac{1}{2}\theta^2$$

であるからXの分散 σ^2 は、

$$\sigma^2 = V(X) = E(X^2) - \mu^2 = \frac{1}{2}\theta^2 - (\frac{2}{3}\theta)^2 = \frac{1}{18}\theta^2$$

である。

また、 V^2 の期待値は次のように表すことができる。

$$E(V^{2}) = E\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}\right)$$

$$= E\left(\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}^{2}-2X_{i}\overline{X}+\overline{X}^{2})\right)$$

$$= E\left(\frac{1}{n-1}\sum_{i=1}^{n}X_{i}^{2}-\frac{n}{n-1}\overline{X}^{2}\right)$$

$$= \frac{1}{n-1}\sum_{i=1}^{n}E(X_{i}^{2})-\frac{n}{n-1}E(\overline{X}^{2})$$

$$= \frac{n}{n-1}(\sigma^{2}+\mu^{2})-\frac{n}{n-1}E(\overline{X}^{2})$$

ここで、

$$\begin{split} E(\overline{X}^{2}) &= E\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right)^{2}\right) \\ &= \frac{1}{n^{2}}E\left(\sum_{i=1}^{n}X_{i}^{2} + 2\sum_{i>j}X_{i}X_{j}\right) \\ &= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}E(X_{i}^{2}) + 2\binom{n}{2}E(X_{i}X_{j})\right) \\ &= \frac{1}{n^{2}}\left(n(\sigma^{2} + \mu^{2}) + n(n-1)E(X_{i})E(X_{j})\right) \\ &= \frac{1}{n}(\sigma^{2} + \mu^{2}) + \frac{n-1}{n}\mu^{2} \end{split}$$

であるから、

$$E(V^{2}) = \frac{n}{n-1}(\sigma^{2} + \mu^{2}) - \frac{1}{n-1}(\sigma^{2} + \mu^{2}) - \mu^{2}$$
$$= \sigma^{2}$$

である。したがって、

$$bE(V^{2}) = b\sigma^{2} = b\frac{1}{18}\theta^{2} = \theta^{2}$$

を解いて、

$$b = 18$$

である。

(6)

この都市の現職市長の男性有権者における支持率の推定値を \hat{p}_x 、女性有権者における支持率の推定値を \hat{p}_y で表したとき、この都市の有権者全体の支持率 p は、

$$\hat{p} = \frac{3}{5} \, \hat{p}_x + \frac{2}{5} \, \hat{p}_y$$

で推定される。

この推定量の分散は、

$$V(\hat{p}) = V\left(\frac{3}{5}\hat{p}_x + \frac{2}{5}\hat{p}_y\right) = \frac{9}{25}V(\hat{p}_x) + \frac{4}{25}V(\hat{p}_y)$$
$$\frac{9}{25} \cdot \frac{\hat{p}_x(1-\hat{p}_x)}{140} + \frac{4}{25} \cdot \frac{\hat{p}_y(1-\hat{p}_y)}{40}$$

であるから、 $u\!\!\left(\frac{0.05}{2}\right)$ を標準正規分布 $N(0,\!1)$ の上側 $\frac{0.05}{2}$ 点とすれば、

近似法による支持率 p の信頼区間は、

$$\left(\hat{p} - u\left(\frac{0.05}{2}\right) \cdot \sqrt{V(\hat{p})}, \hat{p} + u\left(\frac{0.05}{2}\right) \cdot \sqrt{V(\hat{p})}\right)$$

となる。

題意および付表より、

$$\hat{p}_x = \frac{72}{140}$$
, $\hat{p}_y = \frac{25}{40}$, $u\left(\frac{0.05}{2}\right) = 1.9600$

であるから、支持率 p の信頼区間について、

信頼下限 =
$$\hat{p} - u \left(\frac{0.05}{2} \right) \cdot \sqrt{V(\hat{p})}$$

$$= \frac{3}{5} \cdot \frac{72}{140} + \frac{2}{5} \cdot \frac{25}{40} - 1.9600 \cdot \sqrt{\frac{9}{25} \cdot \frac{72}{140} \cdot \left(1 - \frac{72}{140}\right)} + \frac{4}{25} \cdot \frac{\frac{25}{40} \cdot \left(1 - \frac{25}{40}\right)}{40}$$

$$= 0.48067 \Lambda \quad これを切り上げて、0.4807$$

信頼上限 =
$$\hat{p} + u \left(\frac{0.05}{2} \right) \cdot \sqrt{V(\hat{p})}$$

$$= \frac{3}{5} \cdot \frac{72}{140} + \frac{2}{5} \cdot \frac{25}{40} + 1.9600 \cdot \sqrt{\frac{9}{25} \cdot \frac{72}{140} \cdot \left(1 - \frac{72}{140}\right)} + \frac{4}{25} \cdot \frac{\frac{25}{40} \cdot \left(1 - \frac{25}{40}\right)}{40}$$

$$= 0.63648 \cdots$$
 これを切り捨てて、 0.6364

となる。

よって、<u>解答は (D) (I)</u>

(7)

箱の内訳は、次のいずれかであることがわかっている。

- ・赤球が15個、黒球が5個である
- ・赤球が5個、黒球が15個である

よって、帰無仮説 H_0 「赤球が15 個、黒球が5 個である」に対する対立仮説 H_1 は「赤球が5 個、黒球が15 個である」という命題によって与えられる。

したがって、第1種の誤りのおこる確率は

 $P(H_0$ が正しいときに H_0 を棄却する)

- = P(5個の球の中に黒球が1個以上入る | 赤球が15個、黒球が5個である)
- =1-P(5個の球の中に黒球が1個も入らない | 赤球が15個、黒球が5個である)

$$=1-\left(\frac{15}{20}\right)^5$$

=0.7627

また、第2種の誤りのおこる確率は

 $P(H_1$ が正しいときに H_0 を採択する)

= P(5個の球の中に黒球が1個も入らない | 赤球が5個、黒球が15個である)

$$=\left(\frac{5}{20}\right)^5$$

= 0.0010

よって、<u>解答は (G) (A)</u>

(8)

このサイコロについて、帰無仮説「それぞれの目の出る確率が等しい」は、次のように表すことができる。

帰無仮説:
$$p_1 = \frac{1}{6}$$
、 $p_2 = \frac{1}{6}$ 、 · · · 、 $p_6 = \frac{1}{6}$ (p_i は i の目が出る確率($1 \le i \le 6$))

よって、90回中それぞれの目の出る期待回数は、 $90 \times \frac{1}{6} = 15$ 回となる。

iの目の出現回数を f_i として、適合度の検定を行い、

$$\chi^{2} = \sum_{i=1}^{6} \frac{(f_{i} - 15)^{2}}{15}$$

$$= \frac{1}{15} \left\{ (9 - 15)^{2} + (18 - 15)^{2} + (11 - 15)^{2} + (22 - 15)^{2} + (x - 15)^{2} + (30 - x - 15)^{2} \right\}$$

$$= \frac{2}{15} (x - 15)^{2} + \frac{110}{15}$$

自由度 $\phi = 6 - 1 = 5$ の χ^2 分布の上側5%点の値11.0705と比べて、

$$\chi^2 < 11.0705$$

なら、帰無仮説は採択される。

したがって、

$$\chi^2 = \frac{2}{15}(x - 15)^2 + \frac{110}{15} < 11.0705$$

を解くと、

9.70578 < x < 20.2942

となる。

すなわち、帰無仮説が採択されるのは、5の目が出た回数xが10以上、20以下のときとなるため、xの取りうる最小値は10である。

よって、解答は **(C)**

(9)

データ*x*, *y* の平均値は、

$$\overline{x} = \frac{1}{4} \cdot (1.6 + 1.7 + 3.4 + 5.3) = 3.00$$

$$\overline{y} = \frac{1}{4} \cdot (2.4 + 4.8 + 15.2 + 15.8) = 9.55$$

また、相関係数を r_{xy} とすれば、

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

$$= \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x} \cdot \bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right) \left(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2\right)}}$$

$$= \frac{1.6 \cdot 2.4 + 1.7 \cdot 4.8 + 3.4 \cdot 15.2 + 5.3 \cdot 15.8 - 4 \cdot 3.00 \cdot 9.55}{\sqrt{\left(1.6^2 + 1.7^2 + 3.4^2 + 5.3^2 - 4 \cdot 3.00^2\right) \left(2.4^2 + 4.8^2 + 15.2^2 + 15.8^2 - 4 \cdot 9.55^2\right)}}$$

$$= \frac{32.82}{\sqrt{9.10 \cdot 144.67}}$$

$$= 0.90454$$

これより決定係数 R^2 は、

$$R^2 = r_{xy}^2 = 0.8182$$

よって、<u>解答は (E)</u>

(10)

 $\{Y_{\iota}\}$ の分散、時差1、2 の自己共分散をそれぞれ γ_{0} 、 γ_{1} 、 γ_{2} とし、 $E(Y_{\iota})=\mu$ とする。

$$Y_t = 2.0 + 0.6Y_{t-1} + 0.1Y_{t-2} + \varepsilon_t$$
 · · ·

の期待値をとることにより、

$$E(Y_t) = 2.0 + 0.6E(Y_{t-1}) + 0.1E(Y_{t-2})$$

すなわち、

$$\mu = 2.0 + 0.6\mu + 0.1\mu$$
 · · ·

- を行い、 $Y_{t}-\mu$ 、 $Y_{t-1}-\mu$ 、 $Y_{t-2}-\mu$ を両辺に掛けて期待値をとることで、次式が得られる。

$$\gamma_0 = 0.6\gamma_1 + 0.1\gamma_2 + 0.64$$

$$\gamma_1 = 0.6\gamma_0 + 0.1\gamma_1$$

$$\gamma_2 = 0.6\gamma_1 + 0.1\gamma_0$$

この式を解くと、

$$\gamma_0 = \frac{(1 - 0.1)0.64}{(1 + 0.1)\{(1 - 0.1)^2 - 0.6^2\}} = 1.1636\Lambda$$

$$\gamma_1 = \gamma_0 \times \frac{0.6}{(1-0.1)} = 0.7757 \Lambda$$

$$\gamma_2 = 0.6\gamma_1 + 0.1\gamma_0 = 0.5818\Lambda$$

よって、<u>解答は (H) (B)</u>

(11)

この会社の従業員の出勤・欠勤モデルは、以下の4つの状態を定めると、マルコフ過程(連鎖)のモデルで表現することができる。

状態1:本営業日は出勤で、前営業日も出勤

状態2:本営業日は出勤で、前営業日は欠勤

状態3:本営業日は欠勤で、前営業日は出勤

状態4:本営業日は欠勤で、前営業日も欠勤

 P_{ij} を本営業日が状態iの従業員が翌営業日に状態jになる確率とすると、このモデルの推移

確率行列 Pは、

$$P = \begin{pmatrix} P_{11} & P_{12} & P_{13} & P_{14} \\ P_{21} & P_{22} & P_{23} & P_{24} \\ P_{31} & P_{32} & P_{33} & P_{34} \\ P_{41} & P_{42} & P_{43} & P_{44} \end{pmatrix} = \begin{pmatrix} 0.99 & 0 & 0.01 & 0 \\ 0.90 & 0 & 0.10 & 0 \\ 0 & 0.75 & 0 & 0.25 \\ 0 & 0.65 & 0 & 0.35 \end{pmatrix}$$

と表せる。

ここで、定常状態において状態 $1\sim 4$ にある従業員の割合を $\pi=\left(\pi_1,\pi_2,\pi_3,\pi_4\right)$ とすると、 $\pi=\pi\cdot P$ が成り立つので、

$$(\pi_1, \pi_2, \pi_3, \pi_4) = (\pi_1, \pi_2, \pi_3, \pi_4) \cdot \begin{pmatrix} 0.99 & 0 & 0.01 & 0 \\ 0.90 & 0 & 0.10 & 0 \\ 0 & 0.75 & 0 & 0.25 \\ 0 & 0.65 & 0 & 0.35 \end{pmatrix}$$

と表せる。

整理すると、

$$\begin{cases} \pi_1 = 0.99\pi_1 + 0.90\pi_2 \\ \pi_2 = 0.75\pi_3 + 0.65\pi_4 \\ \pi_3 = 0.01\pi_1 + 0.10\pi_2 \\ \pi_4 = 0.25\pi_3 + 0.35\pi_4 \end{cases}$$

また、 $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$ であるから、これらの関係式を解くと

$$\pi_1 = \frac{1170}{1201}, \quad \pi_2 = \frac{13}{1201}, \quad \pi_3 = \frac{13}{1201}, \quad \pi_4 = \frac{5}{1201}$$

を得る。

定常状態において、この会社に出勤している従業員の割合は $\pi_1+\pi_2$ であるから、求める割合は、

$$\pi_1 + \pi_2 = \frac{1183}{1201} = 0.985012 \,\Lambda$$

よって、<u>解答は **(F)**</u>

(12)

$$\sigma = 0.0004^{1/2} = 0.02$$
 だから、 $S_{t+1} = S_t \cdot \exp(0.01 + 0.02 \cdot Z_{t+1})$ である。

また、株価の変動は分布の逆関数法によるので、t=1,2 における Z_t は、標準正規分布の数表を用いて以下のとおりとなる。

t	U	$Z_t = \Phi^{-1}(U)$
1	0.1587	-1
2	0.9332	1.5

(U は[0,1]区間上の一様分布、 Φ は標準正規分布の累積密度関数を表す。)

以上から、

$$F = 10,000 \times \exp(0.01 + Z_1 \times 0.02) = 10,000 \times \exp(-0.01) = 10,000 \times 0.9900 = 9,900$$

$$G = F \times \exp(0.01 + Z_2 \times 0.02) = 9,900 \times \exp(0.04) = 9,900 \times 1.0408 = 10,304$$

$$\therefore G - F = 404$$

よって、解答は (F)

問題 2

(1)

まず、 $X_t=0$ となる場合を考える。 $X_t=0$ はコインを t 回投げた後、駒の位置が 0 であることを意味するので、 $X_t=0$ となる確率 $P(X_t=0)$ は、t-1回目までのコインの表・裏の出方にかかわらず t 回目に裏が出る確率と考えられるため、 $P(X_t=0)=q$ となる。

次に、 $X_t=t$ となる場合を考える。 $X_t=t$ はコインを t 回投げた後、駒の位置が t であることを意味するので、 $X_t=t$ となる確率 $P(X_t=t)$ は、t 回連続で表が出続ける確率であるから、 $P(X_t=t)=p^t$ となる。

以上の結果を用いて、 $X_t = k$ ($1 \le k \le t-1$)となる場合を考える。

コインをt 回投げた後、駒の位置がk であるのは、t-k 回投げた後に駒の位置が0 であり、かつ、そこからk 回連続で表が出る場合と考えられることから、既に得た結果を利用して、

 $X_t = k$ となる確率は、 $P(X_t = k) = P(X_{t-k} = 0) \cdot P(X_k = k) = p^k q$ となることがわかる。 したがって、これらの確率を用いて X_t の期待値 $E(X_t)$ を計算すると、

$$E(X_{t}) = \sum_{k=0}^{t} kP(X_{t} = k) = 0 \cdot q + \sum_{k=1}^{t-1} kp^{k}q + tp^{t}$$

となる。

ここで、
$$S(t-1) \equiv \sum_{k=1}^{t-1} kp^k$$
 とすると、
$$S(t-1) = p + 2p^2 + \Lambda + (t-1)p^{t-1},$$

$$pS(t-1) = p^2 + \Lambda + (t-2)p^{t-1} + (t-1)p^t,$$

$$S(t-1) - pS(t-1) = p + p^2 + \Lambda + p^{t-1} - (t-1)p^t = \frac{p-p^t}{1-p} - (t-1)p^t,$$

$$\therefore S(t-1) = \frac{p-p^t}{(1-p)^2} - \frac{(t-1)p^t}{1-p}$$

したがって、

$$\begin{split} E(X_{t}) &= S(t-1)q + tp^{t} = \left(\frac{p-p^{t}}{(1-p)^{2}} - \frac{(t-1)p^{t}}{1-p}\right)q + tp^{t} \\ &= \frac{p-p^{t}}{1-p} - (t-1)p^{t} + tp^{t} = \frac{p-p^{t}}{1-p} + p^{t} \\ &= \frac{p-p^{t} + (1-p)p^{t}}{1-p} \\ &= \frac{p-p^{t+1}}{q} \end{split}$$

となる。

よって、<u>解答は (D) (H) (A) (C) (I) (D</u>)

(2)

 $P(X_t = k)$ $(0 \le k \le t)$ を以下の手順で求める。

【ルール2】より、明らかに

)
$$t = 0$$
 のとき $P(X_0 = 0) = 1$

)
$$t=1$$
 のとき $P(X_1=0)=0$, $P(X_1=1)=1$

となる。

) t ≥ 2 のとき

まず、 $X_t=0$ となる場合を考える。 $X_t=0$ となるのは、コインの表が一度も出ずにt回目まで連続して裏が偶数回出る場合またはコインの表が出た後t回目まで連続して裏が偶数回出る場合であるから、

$$t$$
が偶数のとき: $P(X_2 = 0) = q^2$ ($t = 2$)

$$P(X_t = 0) = q^t + \sum_{m=1}^{\frac{t-2}{2}} pq^{2m} \quad (t \ge 4)$$

$$t$$
が奇数のとき: $P(X_t = 0) = \sum_{m=1}^{\frac{t-1}{2}} pq^{2m}$

となる。

[例 1 : $X_5 = 0$ となるコインの出方とその確率]

	確率					
1回目	1回目 2回目 3回目 4回目 5回目					
表/裏	表/裏	表	裏	裏	pq^2	
表	裏	裏	裏	裏	pq^4	

なお「表/裏」は、コインの出方が表でも裏でもよいことを意味する。 以下の例 2 においても同様。

[例 2 : $X_6 = 0$ となるコインの出方とその確率]

U				•		
コインの出方						確率
1回目	2回目	3回目	4回目	5回目	6回目	唯一
表/裏	表/裏	表/裏	表	裏	裏	pq^2
表/裏	表	裏	裏	裏	裏	pq^4
裏	裏	裏	裏	裏	裏	$q^{^6}$

次に、 $X_t = t$ となる場合を、t 回目のコインの出方が表である場合と裏である場合に分けて考える。

t回目のコインの出方が表である場合、 $X_{t-1}=t-1$ であれば必ず $X_{t}=t$ となる。 t回目のコインの出方が裏である場合、 $X_{t}=t$ となるためには、 $X_{t-2}=t-2$ で、かつ (t-1)回目のコインの出方が表でなければならない。なぜなら、コインの出方と X_{t} の関係を示した以下の表のとおり、(t-1)回目、t回目と 2 回連続で裏が出る場合には $X_{t}=t$ とはならないためである。

[$X_{t-2}=t-2$ である場合の、コインの出方と X_{t-1},X_t の関係]

t=2のとき							
コインの	X_{t-1}	X_{t}					
(t −1) □目	t 回目	Λ_{t-1}	Λ_t				
表	表	<i>t</i> – 1	t				
裏	表	<i>t</i> – 1	t				
表	裏	t-1	t				
裏	裏	t-1	0				

t≥3のとき							
=	コインの出方		X_{t-1}	X_{t}			
(t-2)回目	(t-1)回目	t 回目	Λ_{t-1}	Λ_t			
表	表	表	<i>t</i> – 1	t			
表	裏	表	<i>t</i> – 1	t			
裏	表	表	<i>t</i> – 1	t			
裏	裏	表	0	1			
表	表	裏	<i>t</i> – 1	t			
表	裏	裏	<i>t</i> – 1	0			
裏	表	裏	<i>t</i> – 1	t			
裏	裏	裏	0	1			

したがって、 $P(X_t = t)$ は漸化式を用いて

$$P(X_t = t) = p \times P(X_{t-1} = t - 1) + pq \times P(X_{t-2} = t - 2)$$

と表される。

この漸化式は、x に関する 2 次方程式 $x^2-px-pq=0$ の解 α,β ($\beta>\alpha$) を用いて以下 の 2 通りに変形できる。

$$P(X_{t} = t) - \beta P(X_{t-1} = t - 1) = \alpha \left(P(X_{t-1} = t - 1) - \beta P(X_{t-2} = t - 2) \right)$$

$$P(X_{t} = t) - \alpha P(X_{t-1} = t - 1) = \beta \left(P(X_{t-1} = t - 1) - \alpha P(X_{t-2} = t - 2) \right)$$

よって

$$P(X_{t} = t) - \beta P(X_{t-1} = t - 1) = \alpha^{t-1} (P(X_{1} = 1) - \beta P(X_{0} = 0)) = \alpha^{t-1} (1 - \beta)$$

$$P(X_{t} = t) - \alpha P(X_{t-1} = t - 1) = \beta^{t-1} (P(X_{1} = 1) - \alpha P(X_{0} = 0)) = \beta^{t-1} (1 - \alpha)$$

$$(\Theta P(X_{0} = 0)) = P(X_{1} = 1) = 1$$

これらの式を $P(X_t=t)$ と $P(X_{t-1}=t-1)$ に関する連立方程式として $P(X_t=t)$ について解けば

$$P(X_t = t) = \frac{\beta^t (1 - \alpha) - \alpha^t (1 - \beta)}{\beta - \alpha}$$

となる。

以上の結果を用いて、 $X_t=k$ となる確率 $P(X_t=k)$ $(1 \le k \le t-1)$ は (1) と同様の考え方で導出することができ、

$$P(X_t=k)=P(X_{t-k}=0)\times P(X_k=k) \quad (1\leq k\leq t-1)$$
 となる。

問題3.

(1)正規母集団 $N(\mu,\sigma^2)$ の母平均 μ を区間推定する方法を導く。

ア. 母分散 σ^2 が既知のとき

標本変量平均 $\overline{X}=rac{1}{n}\sum_{i=1}^{n}X_{i}$ と母平均 μ を用いて適当な統計量 $U_{1}=rac{\overline{X}-\mu}{A}$ を作る。

標本変量平均 \overline{X} は $N(\mu, \frac{\sigma^2}{n})$ に従うから、 $A = \sqrt{\frac{\sigma^2}{n}}$ とおけば、 U_1 の分布は標準正規分布 N(0,1) に従い、かつ母平均 μ とは無関係となる。

ここで、信頼係数を $\alpha(=1-\varepsilon)$ 、 $u_1(\frac{\varepsilon}{2})$ を標準正規分布 N(0,1) の上側 $\frac{\varepsilon}{2}$ 点とすれば、

$$P\left(-u_1(\frac{\varepsilon}{2}) < U_1 = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} < u_1(\frac{\varepsilon}{2})\right) = \alpha$$

となる。これを μ について解くと、

$$P\!\!\left(\overline{X}-u_1(\frac{\varepsilon}{2})\cdot\sqrt{\frac{\sigma^2}{n}}<\mu<\overline{X}+u_1(\frac{\varepsilon}{2})\cdot\sqrt{\frac{\sigma^2}{n}}\right)=\alpha$$

となる。したがって、母平均 $\,\mu\,$ の信頼下限 $\,\hat{\mu}_{_{1L}}$ および信頼上限 $\,\hat{\mu}_{_{1U}}$ はそれぞれ

$$\hat{\mu}_{1L} = \overline{x} - u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma^2}{n}}, \quad \hat{\mu}_{1U} = \overline{x} + u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma^2}{n}}$$

となる。ただし、 \bar{x} は \bar{X} の実現値である。

イ. 母分散 σ^2 が未知のとき

 σ^2 が未知であるから、 σ^2 の代わりに標本変量不偏分散 $V^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})^2$ を

用いて新しい統計量 $U_2=rac{\overline{X}-\mu}{B}$ を作る。

$$B = \sqrt{\frac{V^2}{n}}$$
 とおけば、 U_2 の分布は母平均 μ と母分散 σ^2 とは無関係となる。

また、
$$Z_1 = \frac{(n-1)V^2}{\sigma^2}$$
 () とおけば、 U_2 は U_1 と Z_1 と用いて

$$U_{2} = \frac{\overline{X} - \mu}{\sqrt{\frac{V^{2}}{n}}}$$

$$= \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^{2}}{n} \cdot \sqrt{\frac{1}{n-1} \cdot \frac{(n-1)V^{2}}{\sigma^{2}}}}}$$

$$= \frac{U_{1}}{\sqrt{\frac{Z_{1}}{n-1}}}$$

と表すことができる。

 Z_1 は自由度 n-1 の χ^2 分布に従い(), U_1 は標準正規分布 N(0,1) に従うことから、 U_2 の分布は自由度 n-1 の t 分布に従う。

標本変量分散 $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ を用いれば、自由度 n-1 の χ^2 分布に従う統計量

は、
$$\frac{(n-1)V^2}{\sigma^2} = \frac{nS^2}{\sigma^2}$$
であり、 $\frac{nV^2}{\sigma^2}$ ではない点に注意。

ここで、信頼係数を $\alpha(=1-\varepsilon)$ 、 $u_2(\frac{\varepsilon}{2})$ を自由度 n-1の t 分布の上側 $\frac{\varepsilon}{2}$ 点とすれば、

$$P\left(-u_2(\frac{\varepsilon}{2}) < U_2 = \frac{\overline{X} - \mu}{\sqrt{\frac{V^2}{n}}} < u_2(\frac{\varepsilon}{2})\right) = \alpha$$

となる。これを μ について解くと、

$$P\!\!\left(\overline{X} - u_2(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{V^2}{n}} < \mu < \overline{X} + u_2(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{V^2}{n}}\right) = \alpha$$

となる。 したがって、母平均 μ の信頼下限 $\hat{\mu}_{\scriptscriptstyle 2L}$ および信頼上限 $\hat{\mu}_{\scriptscriptstyle 2U}$ はそれぞれ

$$\hat{\mu}_{2L} = \overline{x} - u_2(\frac{\varepsilon}{2}) \times \frac{v}{\sqrt{n}}, \quad \hat{\mu}_{2U} = \overline{x} + u_2(\frac{\varepsilon}{2}) \times \frac{v}{\sqrt{n}}$$

となる。ただし、 $ar{x}$,vはそれぞれ $ar{X}$,Vの実現値である。

- (2)2つの正規母集団 $N(\mu_x,\sigma_x^2)$ および $N(\mu_y,\sigma_y^2)$ の母平均の差 $\delta=\mu_x-\mu_y$ を区間推定する方法を導く。
 - ア.母分散 σ_x^2, σ_y^2 が既知のとき

標本変量平均の差 \overline{X} $-\overline{Y} = \frac{1}{n_x} \sum_{i=1}^{n_x} X_i - \frac{1}{n_y} \sum_{i=1}^{n_y} Y_i$ と母平均の差 δ を用いて適当な統計

量
$$U_3 = \frac{\overline{X} - \overline{Y} - \delta}{C}$$
を作る。

標本変量平均の差 \overline{X} – \overline{Y} は $N(\mu_x - \mu_y, \frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y})$ に従うことから、

$$C = \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} = \sqrt{\frac{n_y \sigma_x^2 + n_x \sigma_y^2}{n_x n_y}}$$
 とおけば、 U_3 の分布は標準正規分布 $N(0,1)$ に従

い、かつ母平均の差 δ とは無関係となる。

ここで、信頼係数を $\alpha(=1-\varepsilon)$ 、 $u_1(\frac{\varepsilon}{2})$ を標準正規分布 N(0,1) の上側 $\frac{\varepsilon}{2}$ 点とすれば、

$$P\left(-u_1(\frac{\varepsilon}{2}) < U_3 = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} < u_1(\frac{\varepsilon}{2})\right) = \alpha$$

となる。これを δ について解くと、

$$P\left(\overline{X} - \overline{Y} - u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} < \delta < \overline{X} - \overline{Y} + u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}\right) = \alpha$$

となる。したがって、母平均の差 δ の信頼下限 $\hat{\delta}_{\scriptscriptstyle 3L}$ および信頼上限 $\hat{\delta}_{\scriptscriptstyle 3U}$ はそれぞれ

$$\hat{\delta}_{3L} = \overline{x} - \overline{y} - u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}, \quad \hat{\delta}_{3U} = \overline{x} - \overline{y} + u_1(\frac{\varepsilon}{2}) \cdot \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}$$

となる。ただし、 $\overline{x},\overline{y}$ はそれぞれ $\overline{X},\overline{Y}$ の実現値である。

イ . 母分散 σ_x^2, σ_y^2 が未知のとき(ただし、 $\sigma_x^2 = \sigma_y^2 = \sigma^2$ であることが判明している)

 σ_x^2,σ_y^2 が未知であるから、 σ_x^2,σ_y^2 の代わりに2つの標本変量分散

$$S_x^2 = \frac{1}{n_x} \sum_{i=1}^{n_x} (X_i - \overline{X})^2$$
 、 $S_y^2 = \frac{1}{n_y} \sum_{i=1}^{n_y} (Y_i - \overline{Y})^2$ を用いて新しい統計量

$$U_4 = \frac{\overline{X} - \overline{Y} - \delta}{D}$$
を作る。 $\sigma_x^2 = \sigma_y^2$ が成り立つときに、

$$D = \sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right) \left(\frac{n_x S_x^2 + n_y S_y^2}{n_x + n_y - 2}\right)}$$
とおけば、 U_4 の分布は自由度 $n_x + n_y - 2$ の t 分布

()に従い、かつ母平均の差 δ および母分散 σ_x^2,σ_y^2 とは無関係となる。

()

$$Z_2 = \frac{n_x S_x^2 + n_y S_y^2}{\sigma^2}$$
とおけば、 $\sigma_x^2 = \sigma_y^2 = \sigma^2$ が成り立つとき、

$$\begin{split} U_4 &= \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\left(\frac{n_x S_x^2 + n_y S_y^2}{n_x + n_y - 2}\right)}} = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\sigma^2} \times \sqrt{\frac{1}{n_x + n_y - 2} \times \frac{n_x S_x^2 + n_y S_y^2}{\sigma^2}}} \\ &= \frac{U_3}{\sqrt{\frac{Z_2}{n_x + n_y - 2}}} \end{split}$$

と表すことができる。

 Z_2 は自由度 $n_{\scriptscriptstyle X}$ + $n_{\scriptscriptstyle Y}$ - 2 の χ^2 分布に従い、 U_3 の分布は標準正規分布 N(0,1) に従う

ことから、 U_4 の分布は自由度 $n_x + n_y - 2$ の t 分布に従うことがわかる。

ここで、信頼係数を $\alpha(=1-\varepsilon)$ 、 $u_4(\frac{\varepsilon}{2})$ を自由度 n_x+n_y-2 の t 分布の上側 $\frac{\varepsilon}{2}$ 点とすれば、

$$P\left(-u_4(\frac{\varepsilon}{2}) < U_4 = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\left(\frac{n_x S_x^2 + n_y S_y^2}{n_x + n_y - 2}\right)}} < u_4(\frac{\varepsilon}{2})\right) = \alpha$$

となる。これを δ について解くと、

$$P\left(\overline{X} - \overline{Y} - u_4(\frac{\varepsilon}{2}) \cdot \sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\left(\frac{n_x S_x^2 + n_y S_y^2}{n_x + n_y - 2}\right)} < \delta < \overline{X} - \overline{Y} + u_4(\frac{\varepsilon}{2}) \cdot \sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right)\left(\frac{n_x S_x^2 + n_y S_y^2}{n_x + n_y - 2}\right)}\right) = \alpha$$

となる。したがって、母平均の差 δ の信頼下限 $\hat{\delta}_{_{4L}}$ および信頼上限 $\hat{\delta}_{_{4U}}$ はそれぞれ

$$\hat{\delta}_{4L} = \overline{x} - \overline{y} - u_4(\frac{\varepsilon}{2}) \cdot \sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right) \left(\frac{n_x s_x^2 + n_y s_y^2}{n_x + n_y - 2}\right)}$$

$$\hat{\delta}_{4U} = \overline{x} - \overline{y} + u_4(\frac{\varepsilon}{2}) \cdot \sqrt{\left(\frac{1}{n_x} + \frac{1}{n_y}\right) \left(\frac{n_x s_x^2 + n_y s_y^2}{n_x + n_y - 2}\right)}$$

となる。ただし、 $ar{x},ar{y},s_x^2,s_y^2$ はそれぞれ $ar{X},ar{Y},S_x^2,S_y^2$ の実現値である。

問題1.

(1)		(G)	5点	(6)	1	(D)	完答で5点
(2)		(A)	5点		2	(I)	
(3)		(C)	5点	(7)	1	(G)	完答で5点
(4)	1	(A)	完答で		2	(A)	
	2	(C)	1. 5点	(8)		(C)	5点
	3	(D)	完答で	(9)		(E)	5点
	4	(C)	1. 5点	(10)	1	(H)	2. 5点
	(5)	(O)	2点		2	(B)	2. 5点
(5)	1	(B)	2. 5点	(11)		(F)	5点
	2	(I)	2. 5点	(12)		(F)	5点

問題2.

(1)	1)	(D)	2点	(2)	11)	(K)	完答で2点
	2	(H)	2点		12	(G)	
	3	(A)	2点		13	(C)	完答で2点
	4	(C)	完答で3点		14)	(F)	
	(5)	(I)			15	(N)	完答で3点
	6	(D)			16	(G)	ただし
(2)	7	(B)	完答で3点		17)	(M)	1516および1718
	8	(A)			18)	(H)	は順不同
	9	(B)			19	(F)	
	10	(F)	1点				

問題3.

(1)	1	(A)	完答で2点	(2)	11)	(E)	完答で2点
	2	(G)			12	(H)	
	3	(I)	完答で2点		13)	(M)	完答で5点※
	4	(G)			14)	(A)	
	(5)	(H)	完答で2点		15)	(B)	
	6	(A)			16	(G)	
	7	(D)	2点		17)	(C)	1点
	8	(F)	1点	※ 13~1613	は以下を選	選択した場合	らも正解とする。
	9	(D)	1点	(2)	13)	(E)	完答で5点
	10	(G)	2点		14)	(J)	
					15)	(I)	
					16)	(G)	